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Abstract—Transient absorption spectroscopy (TAS) is a field of study that investigates the dynamic process of chemical compounds.
Thanks to the recent emergence of ultrafast pulsed lasers, TAS now extends its reach to studying photochemical reactions occurring
within few femtosecond to nanosecond timescales. With ultrafast TAS, changes in sample absorbance or transmittance over time
following excitation by pulsed light can be measured at a high temporal resolution -tens of femtoseconds. An application of ultrafast
TAS is lifetime measurement for fluorescence decay. However, due to various noise sources (sensor noise, shot noise, unintended
photochemical reactions, etc.) during measurement, obtaining a reliable lifetime value often necessitates extensive repetition resulting
in experiments lasting several hours. In this paper, we introduce an effective time sampling strategy tailored for lifetime measurement
from noisy transient signals. We start with a well-established non-linear curve fitting algorithm and demonstrate that sampling time
shifts that maximize the signal derivative (t = τ ) will minimize the variance in lifetime estimation. Additionally, we reduce the number of
parameters by normalization to ensures the correctness of our algorithm. We demonstrate using simulation that our proposed method
outperforms conventional time sampling or normalization methods across various conditions. Especially, we found that proposed
method gives same error with 5.5× less samples compared to the common TAS measurement strategy that uses exponential time
sampling with full parameter curve-fitting. Moreover, through real-world TAS measurements, we show that our technique results in
2− 8× less standard deviation compared to baseline methods. We expect that our algorithm will be valuable not only for researchers
who use TAS but also for researchers across various fields who use time-gated transient cameras for lifetime analysis.

Index Terms—Transient Absorption Spectroscopy, Transient Imaging, Femtochemistry, Non-linear Curve Fitting

✦

1 INTRODUCTION

Recent advances in imaging systems, especially the ad-
vent of ultrashort tunable lasers in 1990s [1], have cat-
alyzed the emergence of a new research domain for chem-
istry researchers, femtochemistry. Femtochemistry has al-
lowed chemists to investigate ultrafast chemical processes
happening within tens of femtoseconds to nanoseconds.
A quintessential application of femtochemistry is ultrafast
transient absorption spectroscopy (TAS), which has offered
a deeper understanding of the transient dynamics of photo-
chemical reactions.

TAS employs a pump-probe scheme where a high in-
tensity pump pulse (typically in UV-Visible wavelength
range) is used to excite molecules from ground to higher
lying electronic energy states. The pump-induced changes
to the system are then followed by a broadband probe
pulse (varying from X-rays to mid-IR range). In TAS, the
data is typically plotted as change in absorbance which
indicate the absorbance difference between pump-on and
pump-off probe spectra. To attain a time-resolved profile,
this procedure is iterated with various time delays between
the pump and probe pulses. This procedure is similar to
measuring transients with time-gated cameras by shifting
the time gates [2]. The excited state of a molecule can decay
by various radiative (such as fluorescence and phospho-
rescence) and non-radiative processes. The time-resolved
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measurements allow us to estimate the excited state life-
times by fitting the kinetic traces of the integrated signal to
exponential decay functions.

However, the transient profile obtained from TAS is
inherently imperfect, as each observation is susceptible to
various sources of noise. Unintended photochemical or
photothermal reactions may occur, alongside traditional
imaging noise such as shot noise, dark current noise, and
read noise, all of which contribute to the degradation of
estimated lifetime reliability. Existing approach to mitigate
these challenges is to increase the number of time samples
and exposure duration (repetitions) per time sample. This
results in a typical TAS measurement taking 30 minutes to
several hours [3–6], while the exact data collection time may
depend on the target signal-to-noise ratio or experimental
condition. Often the long exposure times can lead to photo
or air degradation of the sample. Moreover, when triplet
states are involved, the system needs to remain deoxy-
genated during the course of measurement, which becomes
difficult to maintain for longer duration. Speeding the exper-
imental measurement time will allow researchers to do more
data collection in shorter time thereby accelerating scientific
research and discovery.

To address this challenge, rather than increasing the
number of samples, we propose a meticulously crafted time-
sampling and data processing algorithm to minimize the
uncertainty of the estimated lifetime. Through simulation,
we found that our method reduces RMSE (root mean square
error) by 4× compared to one of the widely used TAS
measurment strategy (exponential sampling with full pa-
rameter curve-fitting), which empirically translates to 5.5×
less sample to achieve same RMSE. We also observed that
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our method reduces standard deviation by 2 − 8× for real
TAS measurements. While our algorithm was developed to
expedite TAS procedures, we anticipate its utility extending
to researchers across various domains requiring analysis of
exponentially decaying models such as Yu et al. [2].

Here is brief overview of our algorithm: Starting from
conventional non-linear least square methods, we derive a
condition that minimizes variance of estimated parameters.
Assuming independent and identically distributed noise,
we show that the optimal sampling point is the value that
maximizes function derivative with respect to the parameter
that we are interested in. We also propose data normal-
ization that reduces the number of degrees-of-freedom in
the parametric model and show that it ensures correctness
of our technique. We demonstrate the effectiveness of our
algorithm using both simulations and real-world data from
TAS measurements. A step-by-step algorithm is provided in
Sec. 5.5. Readers solely interested in the algorithmic details
may directly navigate to Sec. 5.5.

2 RELATED WORK

2.1 Transient Absorption Spectroscopy

Transient absorption spectroscopy has widespread appli-
cations in the study of ultrafast processes [7–14]. TAS
can be used to measure elemental processes such as elec-
tron transfer [12], conformational change [15], chemical
reactions [16] or solvation [17], and it is also used to
explore the spectrodynamical properties of photochemical
and photobiological systems [7].

In this paper, we focus on the excited state dynamics
of 4CzIPN. The excited state dynamics of thermally ac-
tivated delayed fluorescence (TADF) molecules has been
of great interest for the growth of organic light-emitting
diodes (OLEDs) [11, 18, 19]. Its high efficiency through
delocalized intramolecular charge has been discussed [11].
4CzIPN does show the properties of an extremely highly
efficient TADF molecule [11–13]. Most recent studies show
its usage as (organo)photoredox catalysts in C(sp3)-H bond
functionalization [12], or its use as a corresponding an-
ionic and cationic radical in the utilization of isonitriles
as alkyl radical precursors in light-mediated hydro- and
deuterodeamination reactions [13].

2.2 Data Analysis and Mathematical Modeling

A critical component of transient spectroscopy is not only
the accurate measurement of the transient signal, but also
analysis of observed datasets, commonly referred to as
chemometrics [20]. Its primary aim is the statistical analy-
sis and mathematical modeling of chemical data. Chemo-
metrics has facilitated the comprehension of complex sys-
tems, enabling the interpretation of chemical phenomena in
various field including photochemistry [21], chromatogra-
phy [22–24] and also transient spectroscopy [7, 25].

2.2.1 Mathematical Modeling for Data Explanation

Mathematical modeling to explain the observed data could
be largely categorized into two groups [26]. First is hard-
modeling or parametric modeling, which assumes specific

mathematical function for data interpretation. Such ap-
proach is useful if one have strong prior knowledge on
certain phenomenon, such as global lifetime analysis on flu-
orescence phenomenon. Another group is soft-modeling or
model-free methods which do not make assumptions about
the specific type of function so that are more applicable
to general cases. Additionally, hybrid methods exist, which
utilize different models for the temporal and spectral axes.

When the data measured is for a mixture of differ-
ent chemicals or energy state transitions exhibiting vary-
ing spectral profiles rather than being globally consistent,
multivariate curve resolution (MCR) methods come into
play [27]. Mathematically, MCR represents a superposition
of single separable models, but it entails higher complex-
ity as it necessitates considering the mixing coefficient (or
spectra profile) of each model. Variations of MCR, including
multivariate curve resolution by alternating least squares
(MCR-ALS)[28] or employing weighted strategies (MCR-
WALS)[26], also exist.

In this study, our primary focus lies on single-parametric
models (or mixtures of two, which could be approximated
as single for certain time ranges) with exponential decay.
This is particularly relevant for many fluorescence dynam-
ics, including the case of 4CzIPN.

2.2.2 Curve-fitting Algorithm for Parametric Modeling
To estimate parameters for the parametric model, we need
to rely on curve-fitting algorithms [29, 30], a subject widely
explored in the field of statistics. The least squares method
would be the most commonly employed method, that
aims to minimize the squared error between observations
and values derived from the parametric model. While the
least squares method for linear models has a closed-form
solution, we require an alternate approach for non-linear
models.

A commonly utilized algorithm for non-linear least
squares is an iterative method that updates function param-
eters until convergence, guided by the gradient of the para-
metric function with respect to its parameters. Typical ex-
amples include the Gauss-Newton or Levenberg-Marquardt
algorithms [31], which will be elaborated in Sec. 5.1.

2.2.3 Noise Modeling
Observations are inevitably affected by noise, which can
degrade the performance of curve-fitting algorithms. It is
often assumed that this noise is independent and identically
distributed (iid), a condition known as homoscedastic noise.
However, there also exists heteroscedastic noise, where the
variance is not constant. Sensor read noise, encompassing
thermal noise, source follower noise, and banding pattern
noise, is typically modeled using independent Gaussian
noise [32, 33]. Conversely, shot noise in single-photon imag-
ing systems serves as a common example of heteroscedastic
noise, following a Poisson distribution. Noise modeling
can even be more complex if it is correlated over time or
spectra [26].

In our work, we mostly focus on Gaussian homoscedas-
tic noise based on real-data observations. However, if the
noise distribution is known, we could extend our model to
heteroscedastic case, and in Fig. 5, we show a few examples
for different noise distributions.
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Fig. 1. (A) Illustration of transient absorption spectroscopy. We use a pump pulse to excite the electrons and a probe pulse after a time delay of t to
measure the absorption across wavelengths. (B) For t < 0, i.e., with no pump pulse, only the probe pulse excites electrons from the ground state
(G) to the excited state (E). We show the corresponding absorption spectrum as the first plot in (C). At t = 0, pump pulse excites large numbers of
the electrons to get E state. If we pass the probe laser at t > 0, fewer electrons are at the ground state, so absorption of G→ E is reduced (due
to ground state bleaching by pump pulse). On the other hand, the probe excites electrons to another state, E*, which creates a new peak in the
absorption spectra (absorption of the excited state). The second plot in (C) shows the new absorption spectrum. By computing the difference in the
absorption spectra measured at pump off and t > 0 (pump-on), one can calculate differential absorbance ∆A, shown as third plot in (C). Lack of
ground state electrons (ground state bleaching) results in ∆A < 0, while absorption of excited state shows as ∆A > 0. The differential absorption
decays exponentially, and the decay parameter τ is called the lifetime of the state, which gives us information on the speed of a chemical reaction.

2.3 Optimal Sampling Strategy for Curve Fitting

The reliability of reconstructed function parameters is in-
fluenced by the noise profile, fitting algorithm, but also
the selection of samples, which necessitates well-designed
strategy for the sampling process.

In the field of statistics, several works have addressed
this problem for linear regression models [34–38]. These
studies aim to determine the sampling frequency of each
covariate that minimizes the L2 loss between the latent
ground truth parameter β∗ and the estimated parameter β̂,
quantified by E[∥β̂ − β∗∥2]. This problem statement shares
similarities with the multi-arm bandit problem in reinforce-
ment learning [37], showcasing an exploration-exploitation
trade-off. A common approach involves finding an A-
optimal solution that minimizes the trace of the covariance
matrix.

Our paper aligns with the objective function of previous
works, seeking an optimal sampling strategy that minimizes
E[∥β̂ − β∗∥2]. However, there are several distinctions. First,
our sampling domain does not have constraints, unlike
previous papers. In other words, we have to determine
where to sample rather than how many times to sample
each covariate. Second, our parametric model is a non-linear
function without a closed-form solution, rendering the op-
timization process more complex. To address these chal-
lenges, we introduce a single-point approximation method
(Sec. 5.2), resulting in a solution that we prove is empirically
optimal.

3 TRANSIENT ABSORPTION SPECTROSCOPY

Transient absorption spectroscopy (TAS) is a widely em-
ployed technique in chemistry for studying the dynamics of
chemical reactions [11–13]. TAS is a pump-probe technique
and is illustrated in Fig. 1. This technique utilizes two types
of pulsed lasers: a pump pulse, commonly narrow band-
width with IR wavelength (e.g. 425 nm) to excite electrons
and a probe pulse, commonly broadband (known as white
light continuum) to measure absorption with a delay of t
[14, 39, 40]. The probe pulse could also encompass other
wavelength regions, such as mid-IR which will in turn probe
pump induced dynamics through vibrational signatures of
ground and excited molecules. After passing through the
sample, the probe pulse is directed to a diffraction grating
which disperses the probe light on a detector array. The
intensity difference between the reference laser beam and
the beam passing through the sample is used to generate
the absorption spectrum. The detector array are typically
implemented with Mercury Cadmium Telluride (MCT) ar-
ray or charge-coupled device (CCDs) [12].

The detailed energy-level process of TAS is depicted
in Fig. 1-(B, C) [19, 41]. Initially, for t < 0, the majority
of electrons reside in the ground state energy level (G).
Probe pulse excites the ground state molecules only, and
the detector therefore records the ground state absorption
spectra (G→E). Upon the arrival of the high-intensity pump
pulse at t = 0, a small fraction of the molecules are excited
to a higher energy level (G→E). At t >= 0, the probe pulse
excites both ground state moelcules (G→E) and excited state
molecules (E→E*), which have different energies, thus they
appear at different wavelengths on the spectra. However,



a reduced ground state absorption occurs due to the de-
population of ground state molecules by the pump pulse, a
phenomenon known as ground state bleaching.

By calculating the absorbance difference between t >
0 (pump-on) and any time before the pump pulse (pump-
off), we can compute a differential absorbance ∆A spectrum
which manifests dynamics induced by the pump pulse.

∆A(λ, t) = Apump−on(λ, t)−Apump−off(λ) (1)

Ground state bleaching manifests as ∆A < 0, while excited
state absorption manifests as ∆A > 0. Additionally, phe-
nomena such as stimulated emission (∆A < 0) or product
absorption (∆A > 0) may occur, although they are not
illustrated in Fig. 1-(B). In ultrafast TAS spectroscopy, the
pump off measurement is generally taken on a shot-by-shot
basis by using a chopper which blocks every other pump
pulse at each sampling time t.

In the absence of a quencher, molecules will return
to the ground state, and the deviation of the differential
absorbance gradually diminishes over time. Consequently,
the peak attributed to ground state bleaching or excited state
absorption in Fig. 1-(C) decays as the spectra is measured at
increasing time delays t. For certain cases, the population
decay should theoretically follow an exponential function
(e−t/τ ) [26, 42, 43] with a specific constant τ , known as the
lifetime. The investigation of the lifetime of a excited state
can give information on the speed and efficiency of a chem-
ical reaction and the influence of experimental conditions
such as temperature, solvent environment and others. It is
also used to gain information on the reaction mechanism,
molecular interactions and the transitions states [44].

4 PROBLEM STATEMENT

Since exponential decay may happen for various energy
state transitions or different chemical compounds, ∆A(λ, t)
is often represented as a sum of exponential decays in
Global Lifetime Analysis (GLA) [26],

∆A(λ, t) =
K∑

k=1

Ak(λ)e
−t/τk . (2)

Here, K is the size of the basis expansion, Ak(λ) is the
coefficient related to each wavelength, and τk is the lifetime
of each exponential decay. Since specific reaction only shows
meaningful value for certain wavelength regions, we often
integrate ∆A(λ, t) over λ for the region of interest, reducing
∆A to a function of t alone. Such global analysis assumes
hard modeling of exponential decay but is a powerful tool
if prior determination on the number of exponentials is
possible.

In this paper, we consider monoexponential or biexponen-
tial kinetics where K = 1, 2. Biexponential kinetics is usually
composed of two lifetimes, prompt τp and delayed τd which
govern different energy state transitions,

∆A(t) = Ape
−t/τp +Ade

−t/τd . (3)

In general, τd ≫ τp (τp is in nanoseconds scale, τd is in
microseconds to even seconds scale [45]), and assuming that
we are only interested in τp, we can approximate the second

term as a constant, which makes the target parametric
function as

∆A(t) = Ape
−t/τp +Ad. (4)

Note that such model inherently covers monoexponential
case. For notation brevity, we will use the following model
instead:

I(t) = Ae−t/τ +B. (5)

In short, our goal is to find an efficient time sample
sequence [ti]Mi=1, given the constraint on the number of mea-
surement M , so that estimated lifetime using parametric
model in Eq. (5) gives an accurate value after non-linear
curve fitting.

5 PROPOSED SOLUTION

In this section, we will delineate the proposed method to
reduce variance of estimated lifetime. We will first examine
how non-linear curve fitting algorithms work and derive
an optimal sampling strategy based on approximations.
We also show normalization process which has empirically
guaranteed correctness of our method.

5.1 Non-linear Curve Fitting
Curve fitting is a well-known problem in statistics, where
the objective is to find the parameters β of a target function
f(x, β) that best describes a set of M data pairs (xi, yi). A
commonly used method is least-square method which aims
to find an optimal β̂ that minimize the sum of the squares
of the deviations S(β):

β̂ ∈ argmin
β

S(β) = argmin
β

M∑
i=1

(yi − f(xi, β))
2
. (6)

While closed-form solutions exist for simple cases like lin-
ear models, they are generally not feasible for non-linear
models. An iterative approach is often employed for solving
Eq. (6) in the non-linear case.

Starting from an initial guess on β, we iteratively update
β to β + δ. To determine the δ, we use a first-order approxi-
mation:

f(x, β + δ) = f(x, β) + δT∇f (7)

where ∇f = ∂f(x,β)
∂β is a gradient of f regards to β. Using

this approximation, we can represent Eq. (6) with β + δ as

S(β + δ) ≈ ∥y − f(β)− Jδ∥2 (8)

= (y − f(β))T (y − f(β))− 2(y − f(β))TJδ + δTJTJδ,
(9)

where J is Jacobian matrix with row of Ji =
∂f(xi,β)

∂β , f(β) =
[f(xi, β)]

M
i=1 and y = [yi]

M
i=1. Taking the derivative of above

equation with respect to δ and setting it to zero yields:(
JTJ

)
δ = JT (y − f(β)) . (10)

We can then calculate δ by taking an inverse of
(
JTJ

)
.

Such method is known as Gauss-Newton method. Levenberg-
Marquardt method [31] is a variation of Gauss-Newton
method that introduces a damping factor λ(

JTJ+ λdiag
(
JTJ

))
δ = JT (y − f(β)). (11)

Note that if λ = 0, it is equivalent to Gauss-Newton method.



5.2 Finding an Optimal Sampling Distribution for Non-
linear Curve Fitting

Assume the target model could be perfectly modeled using
a parametric model with latent ground truth parameter β∗.
Prior knowledge about the system could help us determine
the parametric model, which is true for TAS. However, the
actual observation y is not a deterministic value but affected
by an uncontrollable error ϵ:

y = f(x, β∗) + ϵ. (12)

Therefore, even when utilizing the same sampling points, β̂
may vary from experiment to experiment.

Our goal is to identify optimal sampling points x =
[xi]

M
i=1 that minimizes expected error with the ground truth

parameter:
x̂ ∈ argmin

x
E[∥β̂ − β∗∥2], (13)

or, if we are only interested in the jth component of β:

x̂ ∈ argmin
x

E[∥β̂j − β∗
j ∥2]. (14)

However, directly solving the above equation is not feasi-
ble, except for simple cases, as β̂ is obtained through an
iterative process. Therefore, we will explore an approximate
approach to address this challenge.

Instead of considering all of the sampled points at once,
we consider the effect of a single additional sample at the
specific point as illustrated in Fig. 2. The blue dots and the
blue line represent current samples and fitted curve, while
the red dot indicates the new sample. To incorporate this
new sample into the curve fitting process, we need to update
β̂ to β̂+δ. This can be approximately achieved by modifying
Eq. (10):

(∇f∇fT )δ = kϵ∇f. (15)

Here ∇f is the gradient with respect to β at x, and k is
a constant value that mediates the update rate. Note that
the exact β̂ from the iterative method that includes the new
data point would be different from β̂ + δ. However, this ap-
proximation still provides a good insight on understanding
variance of β̂.

A solution to Eq. (15) is

δ =
k

N
ϵ(∇f)−1, (16)

where the inverse operation is applied element-wise and N
is the dimensionality.

If δ is large, it indicates that β̂ undergoes significant
changes due to a noisy observation, which is harmful to
optimize Eq. (14). Thus, it is desirable to minimize δ. Assum-
ing that ϵ is independent and identically distributed (iid),
minimizing δ is equivalent to maximizing ∇f . For Eq. (11),
we could get

δ =
k

N
ϵ(∇f + λ)−1, (17)

which still supports the advantage of maximizing ∇f .
In conclusion, we can approximately say that to mini-

mize error in β̂j , we need more samples at the point that
maximizes (∇f)j .

𝛽 update using 

new sample

𝑓(𝑥, መ𝛽)

𝑓(𝑥, መ𝛽 + 𝛿)

new sample

Optimal curve-fitting that 

minimizes error with 

existing samples 

Approximately optimal curve-fitting that minimizes 

error with existing samples + new sample  

Fig. 2. Single sample approximation. The blue dots are current samples,
and the blue line refers to the current fitted curve with β̂ that optimizes
Eq. (6). We update the blue line to the red line as we observe a new
sample (red dot). This new parameter is approximated as β̂ + δ using
Eq. (16).

5.3 Application to Exponential Decay Model
Our latent parametric model follows exponential decay with
scale and offset as described in Eq. (5). The actual observa-
tion could be modeled as a sum of original ground truth
signal and Gaussian-distributed noise.

Io(t) = I(t) + ϵ = Ae−t/τ +B + ϵ (18)

From M observations, we could reconstruct the parame-
ters using a non-linear least square method, which was
described in Sec. 5.1. Our objective is to identify an optimal
sampling strategy for ti that minimizes the expected error
of τ , as our primary interest lies in accurately estimating the
lifetime. To exploit the algorithm in Sec. 5.2, we calculate
derivative of I with regard to τ which gives:

∂I

∂τ
= Ae−t/τ t

τ2
. (19)

To find t that maximizes ∂I
∂τ , we calculate derivative with

regard to t

∂

∂t

(
∂I

∂τ

)
=

A

τ

(
e−t/τ − t

τ
e−t/τ

)
, (20)

and this has a maximum value at t = τ . Therefore, sampling
at time stamps close to the unknown τ will minimize the
variance of the estimated τ . While the exact value of τ is
unknown, we typically can estimate an approximate lifetime
with the knowledge of the molecular structure or prior
lifetime experiments of the molecule in a different solvent.

5.4 Reducing Number of Parameters through Data Nor-
malization
In practice, the optimal sampling strategy does not work if
we directly apply the sampling algorithm to Eq. (5). This
is primarily because sampling only at t = τ effectively
gives only one (but precise) value, which is insufficient
given the degrees of freedom in β, leading to failed curve
fitting attempts. One solution is to reduce the number of
parameters to optimize, and luckily, for the exponential
model, we can achieve it.
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We apply the following function normalization:

Inorm(t) =
I(t)−B

A
= e−t/τ (21)

which reduces number of parameters to 1. However, since
the values for A and B are unknown, we estimate them
using some initial measurements:

⟨A+B⟩ = E[Io(t = 0)] =
1

MA

MA∑
k=0

Iko (t = 0), (22)

and

⟨B⟩ = E[Io(t = ∞)] =
1

MB

MB∑
k=0

Iko (t = ∞) (23)

where MA and MB are number of samples used for esti-
mating ⟨A + B⟩ and ⟨B⟩ respectively. Note that the total
number of measurements is M , so we can now dedicate
(M − MA − MB) samples to curve fitting. With these
estimators of A and B, we normalize Io as

Inormo (t) =
Io(t)− ⟨B⟩

⟨A+B⟩ − ⟨B⟩
. (24)

This normalized observation should follow a single expo-
nential function without any scale or offset. One considera-
tion when evaluating ⟨B⟩ is the approximation used for the
biexponential model. Since t = ∞ gives zero, not B, we can
use t ≫ τp but t ≪ τd instead of ∞.

Empirically, we have found that the optimal sampling
strategy described in Sec. 5.2 works as expected under this
single parametric model.

5.5 Summary for Optimal Sampling Strategy
We summarize our optimal sampling strategy for estimating
accurate τ for exponential model in Eq. (5).

1) Measure the initial value on t = 0 with sufficiently
many samples for estimate of A+B.

2) Measure the constant term on t = ∞ (or t ≫ τ )
with sufficiently many samples for estimate of B.

3) Sample focusing only on a small region near t = τ .
We can use approximate estimate for τ in practice.

4) Perform signal normalization as Eq. (24).
5) Optimize processed data with e−t/τ function using

non-linear square curve fitting.

6 RESULT

We demonstrate the effectiveness of our sampling strategy
using both simulation and real-data experiments. However,
due to the extensive time required for TAS data acquisition
and the cost of conducting the experiments, we show most
of the results in simulation, which allows us to thoroughly
evaluate the performance of the sampling strategy in var-
ious scenarios without the constraints of real-world data
collection.

6.1 Simulation experiments

We conducted a comparative analysis of our proposed al-
gorithm against various sampling baselines and normal-
ization techniques through simulation. Our latent target
model (Eq. (5)) was parameterized with random values of
A ∈ [1.0, 2.0], τ ∈ [1.0, 3.0], and B ∈ [0.0, 3.0]. For notation
simplicity, we will drop gt and A, τ,B means gt value if
not notated otherwise. Noise ϵ was set to follow a normal
distribution of N (0, 0.165), which reflects noise profile of
real TAS observations in Fig. 9. The samples are distributed
within the range of t ∈ [0, 6] with M = 100. Following
sampling methods are employed:

• uniform : p(t) = constant
• exponential : p(t) ∝ e−t/τ

• derivative : p(t) ∝ ∂
∂τ e

−t/τ ∝ te−t/τ

• derivative pow : same to above, but powered by 10.
• only near τ : p(t) = constant for t ∈ [0.99τ, 1.01τ ],

otherwise 0 (proposed)

where p(t) is sampling pdf for time t. Overall averaged,
distribution of sampled times are visualized in Fig. 3-(B).
Here, we used ground truth τ value for sampling pdf, but
this is also diversified in Sec. 6.1.1. We also tested three
different normalization strategies:



• without normalization : optimize [A, τ,B] for model
of Ae−t/τ +B

• with partial normalization : apply offset subtraction
and optimize [A, τ ] for model of Ae−t/τ

• full normalization : apply full normalization as
Sec. 5.4 and optimize [τ ] for model of e−t/τ

In normalization-based approaches, we varied the ratios of
MA and MB to the total number of samples M , to highlight
importance of proper normalization. Each experiment was
repeated 1000 times with different random seeds. We used
scipy.curve_fit function for non-linear curve fitting,
whose default setting is Levenberg-Marquardt algorithm.

We plot RMSE (root mean square error) of relative error
between estimated lifetime τ̂ and ground truth lifetime
τgt in Fig. 3-(A), employing various sampling and normal-
ization strategies outlined earlier. Overall, we found that
our proposed sampling method with proper normaliza-
tion gives the best result among all of the configurations.
Regarding sampling strategies, the result was consistent
with our interpretation that focusing on τ is helpful (under
full normalization). But it deviated a lot if we do not
apply normalization, which necessitates the normalization
step. Meanwhile, we observed that minimizing the number
of parameters with normalization leads to more accurate
estimates of τ for all sampling strategies. However, this
comes with the caveat that proper normalization is essential.
Using too small number of MA,MB gives false estimate
for A and B which makes data biased after normalization
step. On the other hand, if we use too many samples to
get accurate estimate of A,B, we cannot dedicate enough
samples for curve-fitting which makes the result worse.
Our observations indicate that an optimal proportionality
holds for MA = MB = 0.35. This distribution roughly
equalizes the sample allocation across three crucial points:
t = 0, t = ∞, and t = τ , which is essential to evaluate
A,B, τ , respectively.

Considering that typical default option used for TAS
interpretation is exponential time sampling with full param-
eter fitting (without normalization) which shows RMSE of
0.28, our proposed method achieves the one-fourth RMSE
of 0.07. To achieve same level of RMSE using that typical
setting, we found that we need ×5.5 more samples.

6.1.1 Effect of Using Inaccurate τ for Sampling

In real-world scenarios, it’s often impractical to ascertain
the precise value of τ beforehand. Therefore, it’s more
pragmatic to employ an approximate value, denoted as τs,
for sampling purposes. To evaluate the effect of inaccurate
initial guess, we replicated the previous experiment, main-
taining normalization and a ratio of 0.35, while varying the
initial guess for τs.

The experiment results in Fig. 4 reveal that the per-
formance of our method deteriorates noticeably when τs
substantially diverges from the ground truth τgt. However,
it still exhibits optimal performance within a moderately
wide range, specifically when τs/τgt falls within the inter-
val [0.5, 1.5]. Consequently, if an approximate value within
±50% accuracy of the true τ can be utilized, our proposed
method proves beneficial.
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6.1.2 Heteroscedastic Noise

Theoretically, our model is also applicable for the het-
eroscedastic noise scenarios, provided we know the dis-
tribution of ϵ as a function of t. In such instances, instead
of maximizing ∇f with respect to t, our objective shifts to
finding t that maximizes ∇f/ϵ(t).

For instance, if we consider Poisson noise, characterized
by variance proportional to I(t), our focus shifts from
maximizing te−t/τ to maximizing te−t/τ

√
Ae−t/τ +B. For

the previous settings of A and B, the maximum occurs at
t = 1.375τ . We present the results for different heteroscedas-
tic noise in Fig. 5 which shows a different optimal point than
t = τ .
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6.1.3 Comparison with Linear Curve Fitting
One might question why we do not use simple linear curve
fitting after applying the logarithm to the normalized data.
Actually, this is a common practice for exponential curve
fitting in other fields, such as time constant evaluation in
RC circuits. However, we found that such an approach
is inferior to non-linear curve fitting in our case, which
we demonstrate in Fig. 6 over different sampling methods
and different ϵs. The linear curve fitting is inferior as log
exaggerates the noise or even makes a sample invalid due to
negative observation. This effect would be relatively small
in electric circuits but is critical for the TAS case where noise
variances are significantly larger. We could not find any
advantage of using the proposed sampling for the linear
model.

6.2 Real TAS experiments
Next, we will experiment with real data for lifetime analysis
using TAS. We used 4CzIPN in dichloromethane solvent.
4CzIPN is a typical chemical compound which shows bi-
exponential kinetics with prompt lifetime of 20 − 25ns and
delayed lifetime of few µs [46].

We first conduct experiment using an exponentially in-
creasing time sequence for t ∈ [0ps, 8000ns], which is a
typical time sampling method used in TAS [3]. The result
for ∆A(λ, t) is shown in Fig. 7. For better visualization,
we plotted ∆A over wavelength for different time val-
ues in Fig. 7-(A). As explained before, we could observe
positive and negative peaks in ∆A which decay to zero
over time. To show a better temporal profile, we integrate
differential absorbance for specific wavelength regions and
plot over time in Fig. 7-(B). In region (a), approximately
t ∈ [0ns, 0.5ns], pump pulse excites the electrons so that ∆A
rapidly decreases. We discard this region for exponential
decay fitting. In region (b), approximately t ∈ [1ns, 80ns],
prompt decay dominates and ∆A rapidly increase over
time. In region (c), approximately t > 100ns, delayed decay

TABLE 1: Mean and standard deviation of estimated lifetime
for different configuration in real-data.

Configuration Mean stdev

Exponential (no norm) 32.85 15.37
Exponential (norm) 21.24 4.19

Proposed (norm) 25.95 2.49

dominates and ∆A gradually decreases to zero. One can
explicitly notice the difference between prompt and delayed
decay by comparing the slope. The total number of samples
M = 100, but we only used 37 samples t ∈ [1ns, 80ns]
where prompt decay dominantly takes place.

In contrast, for our proposed method, we uniformly sam-
pled within the range t ∈ [20.5ns, 21.7ns], which is given
from the rough measurement using the existing method
(exponential + normalization in Tab. 1). This also aligns
with previous knowledge that τp lie within 20 − 25 ns [46].
To be fair, we also randomly selected 37 samples for the
proposed sampling.

In calculating the normalization factors, we averaged
the values of 10 samples. Note that B does not represent
background noise but rather a constant value arising from
delayed exponential decay, as mentioned before. Therefore,
it couldn’t be directly obtained from t < 0. Instead, we
approximated it using values around t = 100ns. The ex-
periment was repeated 10 times, and curve fitting was
performed for each experiment.

In Fig. 8, we present an example of sampled values for
single experiment, alongside curve-fitting outcomes with
and without normalization. We excluded curve-fitting for
the proposed method without normalization, as it was al-
ready proven to not work properly using simulation.

In Tab. 1, we provide the average and standard de-
viation of estimated τp across 10 experiments. The result
indicate that employing exponential time sampling without
normalization yields the poorest results. However, applying
normalization techniques notably enhances the accuracy of
estimation. Furthermore, the proposed method exhibits the
lowest variance compared to default exponential sampling,
underscoring its effectiveness in minimizing variability.
Theoretically, they should have exactly same mean, but due
to lack of repetition there were some variations.

6.2.1 Noise profile for real measurements

To demonstrate that our modeling on noise for simulation
was reasonable, we present the noise profile observed in
our experiments in Fig. 9. We first show the covariance
matrix with respect to time in Fig. 9-(A). We found that
error is mostly uncorrelated over time as the covariance
matrix shows high diagonal values. Although not perfectly
identical across time, the similarity observed suggests that
the noise could be approximated as homoscedastic. We also
plot the noise distribution of normalized observations in
Fig. 9-(B). The distribution aligns well with a Gaussian dis-
tribution, with a standard deviation of 0.165, which justifies
our simulation setting.



Time (ns)

W
a

v
e

le
n

g
th

 (
n

m
)

Wavelength (nm)

10.0 ns

30.0 ns

50.0 ns

70.0 ns

Δ𝐴

Δ
𝐴

(l
o

g
-s

c
a

le
)

Time (ns)

(A)

(B)

(A)

(B)

−100

−101

−102

(a)

(b)

(c)

(a) excitation / 

bleaching

(b) prompt 

emission / 

absorption

(c) delayed 

emission / 

absorption
Δ
𝐴

50

0

−50

−100

−150

−200

−250

−300

Time

0 2000 4000 6000 8000

−150

−100

−50

0

50

100 102 103

ground state

bleaching

excitation

101

6200

7100

6200 7100

Fig. 7. Result of transient absorption spectroscopy. We measure differential absorbance (∆A) for each time delay and wavelength and plotted it over
wavelength and time in (A) and (B) respectively. We could find ground state bleaching or excitation absorption in (A) and also noticeable difference
between prompt/delayed process in (B). Note that the data shown here utilizes a mid-IR probe (see supplementary information).

Δ
𝐴

(n
o
rm

a
liz

e
d
)

Time (ns)

samples from 

exponential sampling

samples from 

proposed method

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 10 20 30 40 50 60

Fig. 8. Example of curve-fitting using exponential time sampling and
proposed method for one experiment (we did total 10 repetition). Dotted
line refers to curve-fitting without normalization.

7 CONCLUSION

Ultrafast transient absorption spectroscopy have enabled
researchers to resolve femtosecond dynamics in chemical
processes. Utilizing pump probe time delays varying from
several femtoseconds to nanoseconds or more, crucial infor-
mation on the different elementary steps can be established
such as solvent reorganization time, lifetime kinetics among

others. The measurements however often take long time,
as the user has to repeat the experiment many times to
get a satisfactory signal-to-noise ratio that can be used
for parametric model fitting. In this paper, we propose an
algorithm that significantly reduces the measurement time
using a mathematically robust time-sampling strategy.

We expect there could be various follow-up research
of our work - one can extend our method to multiple
exponential decays or even other parametric models, or
one may consider more complex noise profiles such as
correlated noise. Our work can also be improved from a
statistical viewpoint. We treated each sample equally for
curve fitting, but one can allow duplicates, like the multi-
armed bandit problem, and find better solutions. Finally,
though we originally targeted our algorithm for TAS users,
we expect that our method could be widely applied to other
fields that require the analysis of exponential signals.
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