

Doppler Time-of-Flight Rendering

Juhyeon Kim¹, Wojciech Jarosz¹, Ioannis Gkioulekas², Adithya Pediredla¹ ¹Dartmouth College, ²Carnegie Mellon University

Doppler Time-of-Flight (D-ToF) Imaging [Heide 2015]

 $d \propto$ Time-of-Flight

 $v \propto \text{Doppler Effect!}$

What is Doppler Effect?

Doppler Effect on Amplitude Modulation

Doppler Time-of-Flight Imaging [Heide 2015]

Imaging system setup for D-ToF camera

D-ToF measurements

Radial Velocity Estimation

All images are from [Heide 2015]

Doppler Time-of-Flight Imaging : Advantage

Inter-frame method

D-ToF camera

- **×** Multi-frame sensing
- **×** Long time interval

- ✓ Instant sensing
- ✓ Good for high-speed applications

Digital Twin for D-ToF Imaging System

Doppler Time-of-Flight Rendering

D-ToF Measurements

Reconstructed Radial Velocity

Ours

GT Radial Velocity

Why Physically-based Rendering Required?

Why Physically-based Rendering Required?

Extreme Multi-bounce Cases

Why Physically-based Rendering Required?

Imaging System Design & Simulation

Sensor Design

Large Dataset Generation for Machine Learning ¹²

Two Challenges of Doppler Time-of-Flight Rendering

Simulation of D-ToF Camera

Backgrounds: D-ToF Camera

Backgrounds: D-ToF Camera

Backgrounds: D-ToF Camera

Backgrounds: D-ToF Measurement

18

Backgrounds: D-ToF Measurement $A = \omega_{s}t + \psi$ $B = \omega_g(t - \|\bar{\mathbf{x}}_t\|)$ $\cos(A-B)$ $\cos\left(\left(\omega_s - \omega_g\right)t + \psi - \omega_g \|\bar{\mathbf{x}}_t\|\right)$ Heterodyne $\omega_{\rm d} = \omega_s - \omega_g$ ()frequency One-period sinusoidal [Heide 2015] 2π

D-ToF Measurement – Static Object

D-ToF Measurement – Dynamic Object

D-ToF Measurement – General Cases

Monte Carlo Evaluation for D-ToF Measurement

Evaluation of the Integrand using Monte Carlo Method

D-ToF Rendering

Motion Blur with Uniform Time Sampling

Ground Truth

Typical Motion Blur Scene

Proposed Method : Antithetic Time Sampling

Proposed Method : Antithetic Time Sampling

- 0.5*T* shift is useful regardless of
 - ✓ Frequency
 - ✓ Phase Offset
 - ✓ Waveform (only some)

Mathematically provable!

✓ Applicable to arbitrary modes!

Arbitrary phase offset $0 < \theta < 2\pi$

✓ Useful for multi-bounce simulation

Aligning Path over Time

$\int_{0}^{T} \int_{\mathcal{P}(t)} \frac{\text{Modulation}}{\cos(\omega_{d}t + \psi - \omega_{g} ||\bar{\mathbf{x}}_{t}||)} \frac{\text{Path throughput}}{f(\bar{\mathbf{x}}_{t})}$

Aligning Path over Time

Primal Path

Aligning Path over Time using Shift Mapping

Shift Mapping [Kettunen 2015]

Gradient Domain Rendering

Base Path
Offset Path

Aligning Path over Time using Shift Mapping

Base PathPrimal PathOffset PathAntithetic Path

Aligning Path over Time using Shift Mapping

Mixed strategy based on surface material!

Proposed Sampling Strategy Overview

Path Correlation

Antithetic Sampling

Unbiased Monte Carlo Estimate 33

Experiments & Result

Standard Rendering

Per-Pixel Radial Velocity

Reference D-ToF Image at

 $\omega_{
m r} = 1.0$ Equal to $\omega_{
m d} = rac{2\pi}{T}$

Equal sample per pixel was used for every result! (roughly equal time)

Uniform

Stratified

Antithetic (Proposed)

Reference

Antithetic

Without Shift Mapping

Antithetic

With Shift Mapping

spp = 1024

Result 1: Comparison on Various Heterodyne Frequencies

[Heide 2015]

[Hu 2022]

Does our method work well for other heterodyne frequencies?

Result 2 : Comparison of Number of Time-Samples

Why only 2 time-samples? Can't we use more for better estimate for

$$\int \cos(\omega_{\rm d}t + \psi - \omega_g \|\bar{\mathbf{x}}_t\|)$$
⁴⁸

Result 2 : Comparison of Number of Time-Samples

Complex scene

Can use more time samples

Need to consider path space!

Result 2 : Comparison of Path Correlation Strength

More result & discussion in main paper

Result 3 : Comparison of Shift Mapping Methods

spp = 8192

Path evolution : non-constant $f(\bar{\mathbf{x}}_t)$

Applications of D-ToF Simulator

Reproducing D-ToF Paper Results (Simulation)

More Results: SIGGRAPH DOMINO (SPP=4096)

Reconstructed Radial Velocity

GT Radial Velocity

More Results: FALLING-BOX (SPP=4096)

Reconstructed Radial Velocity

GT Radial Velocity

More Results: MERRYGOROUND (SPP=16384)

Standard Uniform Stratified Proposed Rendering

Reconstructed Radial Velocity

GT Radial Velocity

Conclusion

Amplitude Modulation

Antithetic Time Sampling

Thank you

Project Page : <u>https://juhyeonkim95.github.io/project-pages/dopplertof/</u>

Code for both

Mitsuba0.6 (CPU)

Mitsuba3 (CUDA)

are available!

Acknowledgments: This project was supported by NSF award 1844538, 1730147, 1900849, Sloan Research Fellowship and Burke research initiation award.