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Doppler Time-of-Flight (D-ToF) Imaging [Heide 2015]
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What is Doppler Effect?
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Doppler Effect on Amplitude Modulation
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Doppler Time-of-Flight Imaging [Heide 2015]
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Imaging system setup for 

D-ToF camera 

Camera

Light 

Source

D-ToF measurements

All images are from [Heide 2015] 

Amplitude Modulated!

Radial Velocity

Estimation



Doppler Time-of-Flight Imaging : Advantage
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Inter-frame method D-ToF camera

✓ Instant sensing

✓ Good for high-speed applications

 Multi-frame sensing

 Long time interval



Digital Twin for D-ToF Imaging System
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Imaging / Hardware

?

Rendering / Software

ToF

D-ToF

[Pediredla 2019] [Marco 2017, 2019] [Liu 2022]

Digital Twin



Doppler Time-of-Flight Rendering
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Simulated D-ToF measurements Per-pixel radial velocity 

✓ Physically Accurate
Red/Blue : 

radial velocity



Standard 

Rendering

OursStratifiedUniform

Reconstructed Radial Velocity
GT Radial 

Velocity

D-ToF Measurements



Why Physically-based Rendering Required?
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✓ Physically 

Accurate

 Physically 

Not Accurate

[Heide, 2015]

Single-bounce

Multi-bounce



Why Physically-based Rendering Required?
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Extreme Multi-bounce Cases



Why Physically-based Rendering Required?
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Imaging System 

Design & Simulation
Sensor Design Large Dataset Generation 

for Machine Learning



Two Challenges of Doppler Time-of-Flight Rendering
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[Jarabo 2012, 2014; Marco 2017, 2019; Pediredla 2019; Liu 2022]

ToF (Transient / Time Gated) Rendering Doppler ToF Rendering

High-frequency

Modulation

(10-1000 MHz)

Static Scene Dynamic Scene

Delta-Modulation

Path Correlation

Antithetic Sampling



Simulation of D-ToF Camera
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Backgrounds: D-ToF Camera 
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Backgrounds: D-ToF Camera
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Backgrounds: D-ToF Camera
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Backgrounds: D-ToF Measurement
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Backgrounds: D-ToF Measurement
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0 𝑇

One-period sinusoidal [Heide 2015]

𝜔d =
2𝜋

𝑇

𝜔d = 𝜔𝑠 − 𝜔𝑔
Heterodyne 

frequency 
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D-ToF Measurement – Static Object
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0 𝑇

Static Object

න  = 0



D-ToF Measurement – Dynamic Object
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𝑇0

𝑣

Moving Object

small value

Doppler shift!

න  = 𝜖 ∝ 𝑣



D-ToF Measurement – General Cases
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𝑇0

small value

න  = 𝜖

 Analytic→ Biased!

✓ Monte Carlo→ Unbiased!

Deviation is not 

analytically 

interpretable
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𝑇0

GT of 𝑚(𝑇) : 0.001

+1

−1

Extremely Low SNR

0.49

x90

𝑇0

𝑚(𝑇) : (0.49+0.72-0.65-0.82) / 4 = -0.09

+1

−1

0.72

-0.65 -0.82

Monte Carlo Evaluation for D-ToF Measurement

Naïve Sampling



Evaluation of the Integrand using Monte Carlo Method
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Typical Motion Blur Scene

Motion Blur with 

Uniform Time Sampling
Ground Truth

D-ToF Rendering
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𝑇0

+1

−1

𝑇0

+1

−1 0.5𝑇

0.5𝑇

Naïve Sampling Antithetic Sampling

Proposed Method : Antithetic Time Sampling

𝑡
Primal

𝑡a = 𝑡 + 0.5𝑇

Antithetic

cos 𝑥 + cos 𝑥 + 𝜋 = 0



Proposed Method : Antithetic Time Sampling
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0.5𝑇 shift is useful 

regardless of

✓ Frequency

✓ Phase Offset

✓ Waveform
(only some)

Mathematically 

provable!



𝑇

[Heide 2015]

𝑇

[Hu 2022]

✓ Applicable to arbitrary modes! ✓ Useful for multi-bounce simulation

Arbitrary frequency 0 < 𝜔d <
2𝜋

𝑇
Arbitrary phase offset 0 < 𝜃 < 2𝜋

𝜔d =
2𝜋

𝑇

𝜔d = 𝑘
2𝜋

𝑇

𝜃 = 0.94𝜋

𝜃 = 1.71𝜋



Aligning Path over Time
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Modulation Path throughput



Aligning Path over Time
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Time : 𝑡

Time : 𝑡a = 𝑡 + 0.5𝑇

Primal Path

Antithetic PathWhich path? 𝑓(ത𝐱𝑡)



Aligning Path over Time using Shift Mapping
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Shift Mapping

[Kettunen 2015]

𝑖

𝑖 + 1

Gradient Domain Rendering

Base Path

Offset Path



Aligning Path over Time using Shift Mapping
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𝑡 + 1

Temporal Shift Mapping

[Manzi 2016]

𝑡 + 1

𝑡

𝑡

𝑡𝑎

𝑡𝑎

𝑡𝑎

𝑡 + 1

𝑡

Base Path

Offset Path

Primal Path

Antithetic Path



Aligning Path over Time using Shift Mapping
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𝑡𝑎

𝑡

𝑡𝑎

𝑡

Random Replay

[Hua 2019, Manzi 2016]

Path Reconnection

[Kettunen 2015]

𝑡𝑎

𝑡

𝑡𝑎

𝑡

Generally good for specular Generally good for diffuse

Mixed strategy based on surface material!



Proposed Sampling Strategy Overview
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Goal : Integrate

cos 𝜔d𝑡 + 𝜃 𝑓 ത𝐱𝑡

Path Correlation

cos 𝜔d𝑡 + 𝜃 𝒇 ത𝐱𝒕

Constant!

cos 𝜔d𝑡 + 𝜃
Efficient time sampling for

Antithetic Sampling

Unbiased Monte Carlo Estimate

𝜃 = 𝜓 − 𝜔𝑔 ത𝐱𝑡



Experiments & Result
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Standard Rendering



Per-Pixel Radial Velocity



Reference D-ToF Image at 

𝝎𝐫 = 𝟏. 𝟎

Equal sample per pixel was used for every result! (roughly equal time)

Equal to 𝝎𝐝 =
𝟐𝝅

𝑻



Uniform

spp=1024

𝑇

0



Stratified
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Antithetic (Proposed)
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Antithetic

spp=1024

Without Shift Mapping

0.5𝑇

cos 𝜔d𝑡 + 𝜃

𝑓(ത𝐱𝑡)

Not constant!!

0.5𝑇

𝑇

0

𝑇
0



Antithetic

spp=1024

0.5𝑇

With Shift Mapping

cos 𝜔d𝑡 + 𝜃

𝑓(ത𝐱𝑡)

0.5𝑇

𝑇
0

𝑇

0



44

Radial VelocityAntithetic (Ours)StratifiedUniform G.T.
Standard 

Rendering

spp = 1024



Result 1: Comparison on Various Heterodyne Frequencies
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𝜔r = 1

Perfect Heterodyne Arbitrary Heterodyne

[Heide 2015] [Hu 2022]

0 < 𝜔r < 1

𝑇

0.5𝑇

0 𝑡

𝑡a = 𝑡 + 0.5𝑇

Primal

Antithetic

𝑇

0.5𝑇

0 𝑡

𝑡a = 𝑡 + 0.5𝑇

Primal

Antithetic

Does our method work well for other heterodyne frequencies?
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Result 2 : Comparison of Number of Time-Samples
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Result 2 : Comparison of Number of Time-Samples
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Can use more time samples

Simple scene Complex scene

Need to consider path space!



Result 2 : Comparison of Path Correlation Strength
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Variance in time space decreases ✓ 

Variance in path space increases 

More result & discussion in main paper



Result 3 : Comparison of Shift Mapping Methods
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Path Reconnection

Random Replay Adaptive (analytic)

Adaptive Reference

Adaptive (analytic by [Heide 2015])

Mirror-like

Diffuse

Considering Path Evolution 

(1st Taylor Approximation)

Not Considering Path Evolution 

(0th Taylor Approximation)

spp = 8192

Path evolution : non-constant 𝑓(ത𝐱𝑡)



Applications of D-ToF Simulator
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Reproducing D-ToF Paper Results (Simulation)
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[Heide 2015] setup[Hu 2022] setup
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Reproducing D-ToF Paper Results (from [Hu 2022])

55[Hu 2022], Fig 8.

[Heide 2015] setup[Hu 2022] setup
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Standard 

RenderingProposedStratifiedUniform

Reconstructed Radial Velocity
GT Radial 

Velocity

More Results:  SIGGRAPH DOMINO (SPP=4096)
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More Results:  FALLING-BOX (SPP=4096)
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Velocity
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More Results:  MERRYGOROUND (SPP=16384)
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RenderingProposedStratifiedUniform

Reconstructed Radial Velocity
GT Radial 

Velocity



Conclusion
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Thank you
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Project Page : https://juhyeonkim95.github.io/project-pages/dopplertof/
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