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Fig. 1. We propose an unbiased and efficient rendering algorithm for Doppler time-of-flight cameras. Compared to naive sampling algorithms (left two

columns), ours uses antithetic sampling with path correlation, and results in rendered images with orders of magnitude lower variance (top row). This makes it

feasible to use rendering to evaluate radial velocity reconstruction algorithms (bottom row). (A teaser animation can be viewed in Adobe Acrobat Reader.)

We introduce Doppler time-of-flight (D-ToF) rendering, an extension of ToF

rendering for dynamic scenes, with applications in simulating D-ToF cam-

eras. D-ToF cameras use high-frequency modulation of illumination and

exposure, and measure the Doppler frequency shift to compute the radial

velocity of dynamic objects. The time-varying scene geometry and high-

frequency modulation functions used in such cameras make it challenging

to accurately and efficiently simulate their measurements with existing ToF

rendering algorithms. We overcome these challenges in a twofold manner:

To achieve accuracy, we derive path integral expressions for D-ToF measure-

ments under global illumination and form unbiased Monte Carlo estimates

of these integrals. To achieve efficiency, we develop a tailored time-path sam-

pling technique that combines antithetic time sampling with correlated path

sampling. We show experimentally that our sampling technique achieves

up to two orders of magnitude lower variance compared to naive time-path

sampling. We provide an open-source simulator that serves as a digital twin

for D-ToF imaging systems, allowing imaging researchers, for the first time,

to investigate the impact of modulation functions, material properties, and

global illumination on D-ToF imaging performance.
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1 INTRODUCTION

The last decade has witnessed a proliferation of time-of-flight (ToF)

rendering algorithms, which simulate various ToF cameras in a

physically accurate manner. These algorithms have facilitated sev-

eral improvements in ToF-based imaging systems for applications

such as depth sensing [Marco et al. 2017a; Po et al. 2022; Su et al.

2018], non-line-of-sight imaging [Iseringhausen and Hullin 2020;

Pediredla et al. 2019a; Tsai et al. 2019], and imaging through scat-

tering [Raghuram et al. 2019]. ToF rendering algorithms have also

facilitated sensor design [Zhang et al. 2022] and large dataset gener-

ation for supervised learning [Chen et al. 2020; Gutierrez-Barragan

et al. 2021].

Doppler time-of-flight (D-ToF) cameras are a class of ToF cameras

that use the Doppler effect to estimate the radial velocity of moving

objects [Heide et al. 2015; Hu et al. 2022]. In contrast to inter-frame

methods [Whyte et al. 2015], D-ToF cameras can instantly evaluate

radial velocity [Heide et al. 2015]. This capability makes them ideal

for scenarios requiring high-speed operation, such as industrial
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robotics, automobiles, and drones. Despite the practical importance

of D-ToF cameras, efficient physically accurate rendering algorithms

for them do not exist, hindering research and engineering efforts.

In particular, prior ToF rendering algorithms [Ament et al. 2014;

Jarabo et al. 2014; Liu et al. 2022; Marco et al. 2019, 2017b; Pediredla

et al. 2019b] assume static scenes, and therefore cannot handle the

dynamic scenes that D-ToF cameras typically image. At first glance,

it may appear that combining ToF and motion blur rendering al-

gorithms could enable the simulation of D-ToF cameras. However,

as we explain in Section 3, dynamic scenes break key assumptions

underlying ToF rendering algorithms, making these algorithms inef-

ficient or even incorrect. Moreover, due to the use of high-frequency

modulation in D-ToF cameras, the naive time sampling of motion

blur rendering algorithms results in significant noise, overwhelming

the signal from subtle net-intensity differences between temporally

adjacent light paths that D-ToF cameras measure.

In this paper, we introduce the first efficient, physically based

rendering framework for D-ToF cameras. We start by deriving a

ToF path integral for dynamic scenes (Sec. 3) that generalizes both

ToF and motion blur rendering. We then simulate D-ToF imaging

systems by estimating this integral, which we can do in an unbiased

and efficient manner usingMonte Carlo integrationwith importance

sampling. However, importance sampling the D-ToF integrand is

non-trivial: the integrand is the product of the path throughput and

a sinusoidal function that depends on both time and each path’s time

of flight. Therefore, naive time-path sampling will result in large

variance due to the random cancellation of contributions from the

positive and negative lobes of the integrand as shown in Fig. 1. We

overcome these challenges by introducing an efficient two-step time-

path sampling strategy: time-domain antithetic sampling (Sec. 4),

combined with correlated light path sampling (Sec. 5).

We implement both CPU and GPU versions of our method using

Mitsuba 0.6 [Jakob 2013] and Mitsuba 3 [Jakob et al. 2022], and

demonstrate its effectiveness on scenes with varying geometries

and material parameters (Sec. 6). We show that our method can

efficiently and accurately simulate different types of D-ToF cameras,

including both homodyne and heterodyne at different frequency

ranges. We replicate experimental results from prior D-ToF imaging

work [Heide et al. 2015; Hu et al. 2022], and use our simulations

to analyze failure cases (Sec. 7). We expect that our open-source

implementation will facilitate research toward improving D-ToF

cameras and velocity estimation algorithms.

2 RELATED WORK

Time-of-Flight Imaging. Time-of-flight (ToF) cameras measure

time-resolved flux, and include transient, time-gated, and continuous-

wave time-of-flight (CW-ToF) cameras. Transient cameras [O’Toole

et al. 2017; Velten et al. 2011] use narrow pulsed laser sources and bin

photons based on their time of travel. Time-gated cameras [Pediredla

et al. 2019a; Walia et al. 2022] use pulsed lasers and fast shutters to

capture photons that travel a fixed time range. Continuous-wave

time-of-flight cameras use amplitude-modulated illumination and

exposure, measuring transients in the Fourier domain [Lin et al.

2016; O’Toole et al. 2014; Peters et al. 2015]. All these ToF cameras

have uses in applications such as depth sensing [Foix et al. 2011;

Gokturk et al. 2004; Gupta et al. 2019; Lange and Seitz 2001; Po et al.

2022], robot navigation [Prusak et al. 2008; Yuan et al. 2009], non-

line-of-sight (NLOS) imaging [Buttafava et al. 2015; Kadambi et al.

2016; Liu et al. 2019; O’Toole et al. 2018; Pediredla et al. 2017], and

imaging through scattering media [Naik et al. 2014; Satat et al. 2016].

Some of these applications have been either enabled or enhanced

due to advances in ToF rendering.

Time-of-Flight Rendering. ToF rendering is the physically accu-

rate simulation of measurements of ToF cameras. ToF rendering

algorithms have mostly focused on synthesizing a sequence of im-

ages that show the evolution of light (transient rendering) or a

single image for a specific time gate (time-gated rendering). Both

cases require handling the near-delta temporal manifold, which is a

challenging problem. Inspired by their success in steady-state ren-

dering [Jarosz et al. 2011, 2008; Jensen 2001; Jensen and Christensen

1998], several approaches have proposed using photon density es-

timation [Ament et al. 2014; Jarabo 2012; Jarabo et al. 2014] or

photon beam methods [Marco et al. 2019, 2017b] for ToF rendering.

Pediredla et al. [2019b] adapted ideas from ToF participating media

rendering [Jarabo et al. 2014] and proposed ellipsoidal path connec-

tions to sample contributing paths for time-gated rendering. Liu

et al. [2022] extended this approach to general photon primitives.

Other works focus on accelerated ToF rendering for specific ap-

plications. Tsai et al. [2019] and Iseringhausen and Hullin [2020]

proposed simplified three-bounce rendering models for fast render-

ing in NLOS imaging. Pan et al. [2019] proposed a GPU-accelerated

rasterization method using a transient version of instant radiosity.

Recently, Yi et al. [2021], Wu et al. [2021], and Plack et al. [2023]

developed differentiable ToF rendering algorithms to solve inverse

imaging problems with analysis-by-synthesis.

In contrast to these prior works that largely focused on sampling

the delta time-manifold, we focus on the unexplored problem of

efficiently integrating a time-varying path space coupled with high-

frequency illumination and sensor modulation signals.

Doppler Time-of-Flight Imaging. Doppler time-of-flight (D-ToF)

imaging is a CW-ToF technique that estimates the radial velocity of

a moving object [Heide et al. 2015; Shrestha et al. 2016]. If we illumi-

nate the scene with a high-frequency temporal signal, the moving

objects cause a frequency shift to the observed signal due to the

Doppler effect. Heide et al. [2015] achieve D-ToF imaging using two

ToF imaging modes, homodyne and heterodyne, which differ in sen-

sor modulation frequency. Homodyne mode uses sensor modulation

with the same frequency as the illumination modulation (10MHz

to 1000MHz), whereas heterodyne mode uses a precisely shifted

frequency—an integer multiple of the inverse exposure duration. A

heterodyne image is proportional to the Doppler frequency shift,

which in turn is proportional to the radial velocity. A homodyne

image acts as a normalizing factor. Thus, the ratio of heterodyne

and homodyne images provides the radial velocity. As a heterodyne

mode image measures subtle frequency changes, it has low-intensity

values, and thus a low signal-to-noise ratio (SNR). To overcome this

problem, Hu et al. [2022] proposed heterodyne mode imaging with

arbitrary sensor frequencies that maximize the SNR.

Our algorithms can simulate the cameras proposed by Heide et al.

[2015] and Hu et al. [2022], as well as their generalized variants
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that use arbitrary modulation waveforms. Whereas these papers

use simple analytical models to analyze the D-ToF cameras they

propose, we focus on how to efficiently and physically accurately

simulate such cameras with rendering algorithms that account for

both time-varying path throughput and global illumination effects.

Motion Blur. D-ToF rendering is related to motion blur rendering

techniques [Navarro et al. 2011], which also handle dynamic scenes

that change within exposure. These techniques work by distributing

samples along both pixel (or path) and time spaces. Example sam-

pling techniques for this problem include uniform [Cook et al. 1984],

stratified [Mitchell 1996], adaptive [Whitted 1980], and multidimen-

sional adaptive [Hachisuka et al. 2008], and frequency-aware [Egan

et al. 2009]. However, D-ToF involves high-frequency modulation

functions with negative path contributions, which lead to extreme

variance using existing techniques. We devise tailored time-path

space sampling techniques to tackle this problem.

Antithetic Sampling and Path Correlation. Antithetic sampling is

a variance reduction technique that uses two correlated samples

whose covariance is negative [Hammersley and Morton 1956]. An-

tithetic sampling significantly reduces variance if the integrand has

regions that have negatively correlated parts.

Antithetic sampling has found uses in differential and gradient-

domain rendering [Bangaru et al. 2020; Kettunen et al. 2015; Manzi

et al. 2016; Zeltner et al. 2021; Zhang et al. 2021], leading to the

development of shift mapping techniques for sampling highly cor-

related antithetic pairs of paths. Path correlation can be achieved in

the primary sample space—the same random numbers generate two

correlated paths [Hua et al. 2019; Manzi et al. 2016; Zeltner et al.

2021]—or in the path space—the primal path generates the corre-

lated path by deterministic shifting [Kettunen et al. 2015; Zhang

et al. 2021]. Prior work [Öztireli 2016; Singh et al. 2019; Subr et al.

2014] has additionally employed antithetic sampling in standard

forward rendering for variance reduction.

Due to the use of illumination and sensor modulation, D-ToF

rendering has a periodic integrand that lends itself to antithetic

sampling. We show that antithetic sampling with appropriate path

correlation reduces variance for a variety of modulation waveforms,

including ones that do not have perfectly matching antithetic pairs.

3 DOPPLER TIME-OF-FLIGHT PATH INTEGRAL

We start by deriving a path integral expression for D-ToF rendering,

and investigating its simplified form to devise an efficient sampling

method. We summarize key notation in Tab. 1.

3.1 ToF Path Integral for Dynamic Scenes

The ToF path integral [Jarabo et al. 2014; Pediredla et al. 2019b],

𝑚(𝑇 ) =
∫ 𝑇

0

𝑠 (𝑡)
∫
P
𝑓 (x)𝑔 (𝑡 − ∥x∥) d𝜇 (x) d𝑡, (1)

models the measurements𝑚(𝑇 ) captured by a ToF imaging system

for a scene that remains static during an exposure [0,𝑇 ]. Here,
𝑔(𝑡) and 𝑠 (𝑡) are the illumination and sensor modulation functions,

respectively, and x ≔ x0x1 . . . x𝐾 is a path consisting of 𝐾 + 1

vertices, with x0 on the sensor and x𝐾 on the light source. The path

space P is the set of all light paths of all lengths 𝐾 > 0, and d𝜇 (x)

Table 1. Definition of variables used throughout the paper.

Notation Description

x𝑡 Path with scene geometry at time 𝑡 .

P(𝑡) Path space with scene geometry at time 𝑡 .

M(𝑡, ·) Path mapping function at time 𝑡 .

x(𝑡) Evolution of path x(0) ∈ P(0) to time 𝑡 according toM.

∥x∥ Time of flight of x.
𝜙 (x) Phase offset of path due to ∥x∥.

𝑠 (𝑡), 𝑔(𝑡) Sensor and illumination modulation function.

𝜔𝑠 , 𝜔𝑔 Sensor and illumination modulation function’s frequency.

𝜓 Programmable phase offset at sensor.

[0,𝑇 ] Sensor exposure time.

𝜔
d

Heterodyne frequency, 𝜔𝑠 − 𝜔𝑔 .
𝜔r Normalized heterodyne frequency, 𝜔

d
/𝜔0 (𝜔0 : 2𝜋/𝑇 ).

Δ𝜔 Observed Doppler frequency shift.

𝑁𝑝 Number of sampled path evolutions.

𝑁𝑡 Number of time samples along the evolution of a given x(0).

𝑔 𝑡 = 𝑔1 cos 𝜔𝑔𝑡 + 𝑔0

𝑠 𝑡 = cos(𝜔𝑠𝑡 + 𝜓)

න
0

𝑇

𝑠 𝑡 න
𝒫 𝑡

𝑓 ത𝐱𝑡 𝑔 𝑡 − ത𝐱𝑡 d𝜇 ത𝐱𝑡 d𝑡

𝑓 ത𝐱𝑡 𝑔 𝑡 − ത𝐱𝑡

Illumination signal

Received signal at time 𝑡
from single path ത𝐱𝑡 ∈ 𝒫 𝑡

Camera modulation

Integrate over 
path space 𝒫 𝑡

Integrate over 
exposure time [0, 𝑇]

Dynamic scene ToF path integral
∫

∫

Moving
direction

Fig. 2. Overview of ToF imaging and rendering of a dynamic scene. We show

two paths x𝑡 that arrive at the same image pixel. In D-ToF imaging, 𝑠 (𝑡 )
and 𝑔 (𝑡 ) are high-frequency sinusoidal functions. The sinusoidal waves

represent the illumination intensity at each point on the two paths.

is the corresponding Lebesgue measure. The path throughput 𝑓 (x)
accounts for visibility, geometric attenuation, and reflectance at all

path vertices and edges. We use ∥x∥ ≔
∑𝐾−1
𝑗=0

x𝑗 − x𝑗+1

for the

time of flight of a path, where

x𝑗 − x𝑗+1

is the time it takes light

to travel from x𝑗+1 to x𝑗 considering the medium refractive index.

The assumption of a static scene allowed previous techniques to

change the integration order in the ToF path integral:

𝑚(𝑇 ) =
∫
P
𝑓 (x)𝑊𝑇 (∥x∥) d𝜇 (x), (2)

where 𝑊𝑇 (∥x∥) ≔
∫ 𝑇
0
𝑠 (𝑡)𝑔 (𝑡 − ∥x∥) d𝑡 is the pathlength impor-

tance [Pediredla et al. 2019b]. This form of the ToF path integral

enabled the development of importance sampling strategies for path

length [Pediredla et al. 2019b], and even techniques to analytically

integrate the pathlength importance over time [Liu et al. 2022].
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However, in general, the scene geometry is not static within

exposure, and the path space P(𝑡) varies over time 𝑡 as surfaces in

the scene move. Then, the ToF path integral becomes

𝑚(𝑇 ) =
∫ 𝑇

0

𝑠 (𝑡)
∫
P(𝑡 )

𝑓 (x𝑡 )𝑔 (𝑡 − ∥x𝑡 ∥) d𝜇 (x𝑡 ) d𝑡 . (3)

Here, x𝑡 ∈ P(𝑡) is a light path, similar to x, but using scene geome-

try at time 𝑡 . We call Eq. (3) the dynamic ToF path integral. D-ToF
imaging is a special case of this path integral where the modulation

functions are high-frequency functions designed for radial velocity

estimation [Heide et al. 2015]. Figure 2 visualizes the terms of Eq. (3)

in a D-ToF imaging system. Equation (3) is, in fact, more general

and can reproduce not only D-ToF imaging, but also other dynamic

scene-related phenomena such as motion blur. However, whereas

lighting may change slightly during exposure in a typical motion

blur setting, D-ToF imaging includes extremely high-frequency mod-

ulation functions, necessitating new rendering approaches.

We ignore the subtle difference between the actual light path that

arrives at the sensor at time 𝑡—and thus interact with the scene at

times prior to 𝑡—and the path that is built using scene geometry at

time 𝑡 . We show in the supplement that this approximation intro-

duces a negligible bias that is proportional to the square of the ratio

of the radial velocity 𝑣 to the speed of light 𝑐 .

3.2 Path Evolutions over Time

The dynamic ToF path integral (3) does not assume any path map-

ping function over time, which means x𝑡 are all independent. How-
ever, imposing such a cross-time path correspondence makes the

double integral more tractable. Therefore, we will introduce a path

mapping function M(𝑡, ·) : P(0) → P(𝑡) that is bijective for all
𝑡 ∈ [0,𝑇 ] and maps a path x0 to a path at arbitrary time 𝑡 . We write

a path evolution at time 𝑡 under this mapping as x(𝑡) ≔ M(𝑡, x0),
which implies x(𝑡) = M(𝑡, x(0)). Replacing x𝑡 with x(𝑡) in Eq. (3):∫ 𝑇

0

𝑠 (𝑡)
∫
P(𝑡 )

𝑓 (x(𝑡))𝑔 (𝑡 − ∥x(𝑡)∥) d𝜇 (x(𝑡)) d𝑡

=

∫ 𝑇

0

𝑠 (𝑡)
∫
P(0)

𝑓 (x(𝑡)) 𝐽M (x(0))𝑔 (𝑡 − ∥x(𝑡)∥) d𝜇 (x(0)) d𝑡

=

∫
P(0)

∫ 𝑇

0

𝑓 (x(𝑡))𝑠 (𝑡)𝑔 (𝑡 − ∥x(𝑡)∥) d𝑡 d𝜇 (x(0)), (4)

where 𝐽M (x(0)) ≔ d𝜇 (x(𝑡 ) )/d𝜇 (x(0) ) is the determinant of the Jaco-

bian of the mapping, and 𝑓 (x(𝑡)) ≔ 𝑓 (x(𝑡)) 𝐽M (x(0)). This formu-

lation is analogous to the material-form path space parameterization

by Zhang et al. [2020]. To justify the assumption that there exists

such a bijective mapping M, we provide one intuitive example: We

consider a path x(0) with vertices attached to different points of the

scene geometry at time 𝑡 = 0. As the scene geometry evolves over

time, these points will move to new locations, evolving at each time

𝑡 into a new path x(𝑡) in bijective correspondence with the original

path x(0). The mappingM induced by this correspondence is not

the only possible one, and we discuss other mappingsM we use for

our rendering algorithm in Sec. 5.

3.3 Sampling Strategy for D-ToF Rendering

To start our investigation of efficient sampling techniques, we first

examine the shape of the integrand in Eq. (4) for the D-ToF case.

Similar to the setup Heide et al. [2015] describe, we will consider sen-

sor and illumination modulation functions that are high-frequency

sinusoidal waves with frequencies 𝜔𝑠 and 𝜔𝑔 , respectively:

𝑠 (𝑡) ≔ cos (𝜔𝑠𝑡 +𝜓 ); 𝑔(𝑡) ≔ 𝑔1 cos
(
𝜔𝑔𝑡

)
+ 𝑔0 . (5)

Here, 𝜓 is a programmable phase offset at the sensor, and 𝑔1, 𝑔0
are constant values. We define the difference between the two fre-

quencies as the heterodyne frequency 𝜔
d
≔ 𝜔𝑠 − 𝜔𝑔 . Heide et al.

[2015] used two imaging modes for radial velocity evaluation: het-
erodyne mode with 𝜔

d
= 2𝜋/𝑇 , and homodyne mode with 𝜔

d
= 0.

In subsequent work, Hu et al. [2022] proposed using a heterodyne

mode where 𝜔
d
can take any value within the range of [0, 2𝜋/𝑇 ],

to improve signal-to-noise ratio. We aim to reproduce this more

general setting and thus assume that 𝜔
d
∈ [0, 2𝜋/𝑇 ].

We define the path phase offset 𝜙 (x) ≔ −𝜔𝑔 ∥x∥, and use it to

express the integrand in Eq. (4) as:

𝑓 (x(𝑡)) cos (𝜔𝑠𝑡 +𝜓 )
(
𝑔1 cos

(
𝜔𝑔𝑡 + 𝜙 (x(𝑡))

)
+ 𝑔0

)
. (6)

Expanding the cosine terms in Eq. (6), we get the following terms:

𝑔1

2

cos

(
(𝜔𝑠 + 𝜔𝑔)𝑡 +𝜓 + 𝜙 (x(𝑡))

)
+ 𝑔1

2

cos

(
(𝜔𝑠 − 𝜔𝑔)𝑡 +𝜓 − 𝜙 (x(𝑡))

)
+ 𝑔0 cos (𝜔𝑠𝑡 +𝜓 ). (7)

As 𝑓 (x(𝑡)) and 𝜙 (x(𝑡)) vary slowly relative to𝜔𝑠 , and𝑇 ≫ 1/𝜔𝑠 , the

high-frequency terms (𝜔𝑠 + 𝜔𝑔 and 𝜔𝑠 ) approximately sum to zero

when we integrate over [0,𝑇 ]. Empirically, we found that ignoring

the high-frequency terms reduces the variance by several orders of

magnitude. This low-pass filtering operation introduces bias of order

O(𝜔
d
𝑣/𝑐) to the Doppler frequency shift, itself of order O(𝜔𝑔𝑣/𝑐).

As 𝜔
d
is typically around a few kHz and 𝜔𝑔 ranges from 10MHz to

1000MHz, in practice the bias is less than 0.1% and thus negligible.

Therefore, we will consider only the low-frequency (𝜔𝑠 − 𝜔𝑔 = 𝜔d
)

term of 𝑠 (𝑡)𝑔 (𝑡 − ∥x(𝑡)∥), which we will refer to as the modulation
term for simplicity,

𝑔1

2

cos (𝜔
d
𝑡 − 𝜙 (x(𝑡)) +𝜓 ) . (8)

We can do similar low-pass filtering for arbitrary periodic signals

𝑠 (𝑡), 𝑔(𝑡) using their Fourier series which results in correlation of

two signals with frequency of 𝜔
d
, as we show in the supplement.

Substituting Eq. (8) in Eq. (4) gives a tractable D-ToF path integral:∫
P(0)

∫ 𝑇

0

𝑓 (x(𝑡))𝑔1
2

cos (𝜔
d
𝑡 − 𝜙 (x(𝑡)) +𝜓 ) d𝑡 d𝜇 (x(0)) . (9)

To understand the behavior of Eq. (9), in Fig. 3 we plot the integrand

at three pixels assuming single-bounce paths x(𝑡). The illumination

is a point light source collocated with the sensor. In heterodyne

mode, the integrand is a sinusoid of exactly one period for static

objects, making the integral zero in this case. For dynamic objects,

𝜙 is a function of time and contributes a Doppler frequency shift,

making the integrand not a single-period sinusoid. This results

in a non-zero integral and this non-zero value is important for

computing the Doppler frequency shift, and thus the radial velocity.

In homodyne mode, the integrand is close to a linear function as
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Fig. 3. Integrand of Eq. (9) for a single-bounce path over time. Integrating

the signal over the time-path space generates the homodyne and heterodyne

images (first row). The unfiltered version is also plotted at the corner.

𝜔
d
= 0. For paths near edges where scene discontinuities occur, we

observe drastic changes in the integrand (third column in Fig. 3). In

this case, ∥x(𝑡)∥ and 𝑓 (x(𝑡)) change significantly during exposure,

and the integrand is neither a sinusoidal nor a linear function.

Inspired by this pilot experiment, we estimate the double integral

of Eq. (9) by sampling its two domains, time and path, in two steps

that we visualize in Fig. 4:

1. Assuming 𝑓 (x(𝑡)) and ∥x(𝑡)∥ do not change significantly

with time 𝑡 for some, still unknown, x(0) (i.e, assuming the

behavior of the third column in Fig. 3-(b) is rare), we find two

antithetic time samples for which Eq. (8) has approximately

the same deviation from ground truth but opposite sign.

2. We use these time samples to create correlated path samples,

equal to the evolutions x(𝑡) of an underlying x(0) at the
sampled times 𝑡 , such that 𝑓 (x(𝑡)) and ∥x(𝑡)∥ do not vary

significantly with 𝑡 , as we required in the first step.

We use these samples to form a Monte Carlo estimator of Eq. (9):

⟨𝑚(𝑇 )⟩ ≔ 1

𝑁

𝑁𝑝∑︁
𝑖=0

𝑁𝑡∑︁
𝑗=0

ˆ𝑓 (x𝑖 (𝑡 𝑗 )) 𝑔1
2
cos

(
𝜔
d
𝑡 𝑗 − 𝜙 (x𝑖 (𝑡 𝑗 )) +𝜓

)
𝑝 (𝑡 𝑗 )𝑝 (x𝑖 (0))

, (10)

where 𝑁𝑝 is the number of paths x(0) used for evolutions, 𝑁𝑡 is the

number of antithetic time samples for the evolution of each x(0)
(which we set to 2 by default), 𝑁 ≔ 𝑁𝑝 · 𝑁𝑡 is the number of total

path samples, and 𝑝 is the sampling probability density function

(pdf). We detail antithetic time sampling in Sec. 4 and correlated

path sampling in Sec. 5. It is challenging to reverse the sampling

order—find antithetic samples in the path domain and align them in
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th

 s
pa

ce
   
𝒫

𝑡
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Fig. 4. Overview of our sampling strategy. We visualize path evolutions x(𝑡 )
for different paths x(0) as horizontal lines in the time-path space. We first

sample time using antithetic sampling, then create correlated path samples

as evolutions of different x(0) to the sampled antithetic time pairs.

the time domain—as this would require finding an antithetic path

with a specific length, which is expensive [Pediredla 2019].

4 TIME DOMAIN ANTITHETIC SAMPLING

Assuming a given path evolution where 𝑓 (x(𝑡)) and ∥x(𝑡)∥ do not

change significantly with 𝑡 , we aim to find an efficient time-sampling

strategy using 𝑁𝑡 samples for the modulation term time integral,∫ 𝑇

0

cos (𝜔
d
𝑡 − 𝜙 (x(𝑡)) +𝜓 ) d𝑡, (11)

where 𝜔
d
∈ [0, 2𝜋/𝑇 ]. There is a trade-off between the number of

independent path evolutions 𝑁𝑝 and the number of time samples

𝑁𝑡 , given a fixed budget 𝑁 of total path samples. Increasing 𝑁𝑡
decreases the variance of the modulation term; but it also reduces

𝑁𝑝 which in turn increases the variance of the path throughput term.

Empirically, we found that 𝑁𝑡 = 2 results in lower overall variance,

and thus fix it throughout the paper unless we state otherwise.

4.1 Antithetic Sampling for Modulation Term

To further narrow down our problem, we simplify Eq. (11). We

assume that ∥x(𝑡)∥ is near constant over a path evolution, so we

can approximate𝜙 (x(𝑡)) ≈ 𝜙 (x(0)). We use this approximation only
to derive time sampling techniques and not for the actual evaluation.

We can represent 𝜙 (x(0)) +𝜓 as a random variable 𝜃 of unknown,

scene-dependent distribution. Then, Eq. (11) simplifies to:∫ 𝑇

0

cos (𝜔
d
𝑡 + 𝜃 ) d𝑡 . (12)

We know 𝜔
d
before sampling, but not 𝜃 . Our goal is to efficiently

evaluate Eq. (12) for 𝜔
d
∈ [0, 2𝜋/𝑇 ] and unknown 𝜃 .

For inspiration on how to sample time, we consider the hetero-

dyne and homodyne cases (Fig. 5-(a,b)). In these cases, we can easily

find a zero-variance estimator using two-sample antithetic sam-
pling. If 𝜔

d
= 2𝜋/𝑇 (perfect heterodyne), given primal sample 𝑡 ,

we can select the antithetic sample as 𝑡a = mod(𝑡 + 0.5𝑇,𝑇 ). Then
cos(2𝜋/𝑇𝑡 + 𝜃 ) is exactly a cosine function with period [0,𝑇 ], and
antithetic sampling gives exactly zero variance regardless of 𝑡 and

𝜃 . We call this strategy shifted antithetic sampling.
If 𝜔𝑑 ≈ 0 (homodyne), the integrand becomes close to a linear

function. Then, selecting a symmetric antithetic sample as 𝑇 − 𝑡
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Fig. 5. Antithetic sampling for (a) homodyne, (b) heterodyne, and (c) arbi-

trary heterodyne mode. The ground truth integration value is 𝜇. In (a) and

(b), we can find an antithetic pair with mirroring and shifting, respectively,

that makes the primal and antithetic samples sum to 𝜇. But in (c), we cannot

find such perfectly matching antithetic sample.

will make the sum of primal and antithetic values have expected

value cos (𝜔𝑑𝑡 + 𝜃 ) for 𝑡 ∈ [0,𝑇 ]. Thus we obtain a zero-variance

estimator. We call this strategy mirrored antithetic sampling.
However, our goal is to handle arbitrary𝜔

d
∈ [0, 2𝜋/𝑇 ] as Hu et al.

[2022] proposed, so we cannot expect to find a perfectly matching

antithetic sample in general (Fig. 5-(c)). Instead, we aim to find

an antithetic sample that minimizes the variance over 𝑡 . We use

shifted or mirrored antithetic sampling by setting the antithetic

sample as 𝑡 + 𝑡s or −𝑡 + 𝑡s for some constant 𝑡s. (We omit the mod

operation over 𝑇 for simpler notation.) For perfect heterodyne or

homodyne operation, 𝑡s has an optimal value at 𝑡s = 0.5𝑇 and

𝑡s = 0, respectively. In the following subsections, we will discuss

the relationship of our antithetic estimator to auto-correlation and

auto-convolution in signal processing, and show that 𝑡s = 0.5𝑇 and

𝑡s = 0 is also optimal for arbitrary heterodyne frequencies.

4.2 Shifted Antithetic Sampling and Auto-correlation

We start with shifted antithetic sampling (𝑡a = 𝑡 + 𝑡s), which is

optimal for the heterodyne case. Using a primal sample 𝑡 drawn

uniformly and an antithetic sample 𝑡+𝑡s, the variance of an antithetic
estimator for an arbitrary integrand 𝑥 (𝑡) is

Var(𝑡s) =
∫ 𝑇

0

(
𝑥 (𝑡) + 𝑥 (mod(𝑡 + 𝑡s,𝑇 ))

2

− 𝜇𝑥
)
2

d𝑡, (13)

where 𝜇𝑥 is the mean of 𝑥 (𝑡) in [0,𝑇 ]. We see that minimizing the

variance is equivalent to minimizing the auto-correlation :

𝑅(𝑡s) =
∫ 𝑇

0

𝑥 (𝑡)𝑥 (mod(𝑡 + 𝑡s,𝑇 )) d𝑡 . (14)

As auto-correlation is symmetric around 0.5𝑇 , we can represent

𝑅(𝑡s) = 𝐹 (𝑡s) + 𝐹 (𝑇 − 𝑡s) for some 𝐹 . If 𝑥 (𝑡) = cos (𝜔
d
𝑡 + 𝜃 ), we can

analytically calculate 𝐹 (𝑡s) as

𝐹 (𝑡s) =
1

2𝜔
d

cos (𝜔
d
𝑇 + 2𝜃 ) sin (𝜔

d
𝑡s) +

𝑡s

2

cos (𝜔
d
(𝑇 − 𝑡s)). (15)

To better understand this expression, we express 𝑅 as a function of

𝜔
d
, 𝜃, 𝑡s, rather than just 𝑡s. Then, we prove in the supplement that

𝑅(𝜔
d
, 𝜃, 𝑡s) has a global minimum at 𝑡s = 0.5𝑇 regardless of the val-

ues of 𝜔
d
, 𝜃 , if 𝜔

d
∈ [0, 2𝜋/𝑇 ]. Interestingly, optimality at 𝑡s = 0.5𝑇

also holds for other waveforms, such as triangular or trapezoidal,

as Fig. 6 shows. The fact that the optimal shift is independent of 𝜃
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Fig. 6. Var(𝜔
d
, 𝜃, 𝑡s ) of shifted antithetic sampling for various waveforms

𝑥 (𝑡 ) . They all have optimal values at 𝑡s = 0.5𝑇 regardless of 𝜔
d
and 𝜃 .

Without loss of generality, we set𝑇 = 1 and hence, 𝜔𝑑 ∈ [0, 2𝜋 ]. We only

show results for two cases, but the tendency was similar for other 𝜃s.

provides a significant benefit when we consider multi-bounce paths,

which contain many subpaths with different 𝜃 values.

4.3 Mirrored Antithetic Sampling and Auto-convolution

For mirrored antithetic sampling 𝑡a = −𝑡 + 𝑡s, which is optimal for

the homodyne case, we can repeat our analysis analogously to the

previous subsection. The only difference is that the auto-correlation

becomes auto-convolution as the sign is inverted:

𝐶 (𝑡s) =
∫ 𝑇

0

𝑥 (𝑡)𝑥 (mod(−𝑡 + 𝑡s,𝑇 )) d𝑡 . (16)

Unfortunately, in this case, we cannot find a globally minimal 𝑡s
that is independent of 𝜔

d
and 𝜃 for 𝑥 (𝑡) = cos (𝜔

d
𝑡 + 𝜃 ). Instead,

we try to find an optimal value for the expectation over 𝜃 . As we do

not know in advance the distribution of 𝜃 , which depends on path

time-of-flight, we assume it to be uniform over [0, 2𝜋]. Then, for
the sinusoidal wave, we can analytically calculate the expectation:

E𝜃 [𝐶 (𝜔d
, 𝜃, 𝑡s)] =

sin (𝜔
d
𝑡s) + sin (𝜔

d
(𝑇 − 𝑡s))

2𝜔
d

, (17)

and this has a minimum at 𝑡s = 0,𝑇 regardless of 𝜔
d
∈ [0, 2𝜋/𝑇 ].

4.4 Comparison with Uniform and Stratified Sampling

In Fig. 7, we compare the variance of antithetic sampling with other

sampling methods—uniform sampling and stratified sampling, with

𝑁𝑡 = 2. For both antithetic sampling techniques, we use our pre-

viously derived optimal shift 𝑡s. In Fig. 7-(a) we plot Var(𝜔
d
, 𝜃 ) for

different𝜔
d
, 𝜃 , and in Fig. 7-(b) we plot the expectation ofVar(𝜔

d
, 𝜃 )

over 𝜃 and its ratio to the uniform sampling case. Overall, antithetic

sampling has better performance than both uniform and strati-

fied sampling for different values of 𝜔
d
. Mirrored antithetic sam-

pling is most effective for 𝜔
d
∈ [0, 𝜋/𝑇 ], and shifted antithetic for

𝜔
d
∈ [𝜋/𝑇 , 2𝜋/𝑇 ]. We also observe that the advantages of different

antithetic sampling strategies persist across different waveforms,

including triangular and trapezoidal (Fig. 7-(b)).
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Fig. 7. Comparison of time sampling methods with 𝑁𝑡 = 2. (a) We plot

Var(𝜔
d
, 𝜃 ) for a sinusoidal waveform using different sampling methods.

Like Hu et al. [2022], we use 𝜃 ′ = 𝜃 + 0.5𝜔
d
𝑇 instead of 𝜃 for the x-axis to

make the plot not skewed. We set𝑇 = 1. (b) For different sampling methods

and waveforms, we plot (left) E𝜃 [Var(𝜔d
, 𝜃 ) ], and (right) its ratio to the

variance from uniform sampling. Mirrored and shifted antithetic sampling

are most effective for 𝜔
d
∈ [0, 𝜋/𝑇 ] and 𝜔

d
∈ [𝜋/𝑇 , 2𝜋/𝑇 ], respectively.

4.5 Further Stratification in the Time Domain

Until now, we have only considered the simple 1D case where

𝑁 = 𝑁𝑡 = 2, as in Fig. 8-(a). For rendering, however, we will need to

consider sampling over the path domain while additionally increas-

ing 𝑁 (for example, 𝑁 = 8 in Fig. 8-(b) and (c)). The direct extension

of the 1D case with 𝑁𝑡 = 2 would correspond to Fig. 8-(b). Unfortu-

nately, this extension does not stratify the collection of all𝑁 samples

across the time domain, as the stratification is still fixed by 𝑁𝑡 = 2.

We could improve stratification by increasing 𝑁𝑡 > 2, but doing so

reduces path diversity for a fixed sample budget 𝑁 = 𝑁𝑡 · 𝑁𝑝 .
Instead, we propose to combine antithetic sampling with further

stratification over the time domain (Fig. 8-(c)). For 𝑁𝑡 = 2, our

approach distributes the primal samples within the left half of the

time domain, and places the antithetic samples at either a shifted (7a)

or mirrored (8a) location in the right half of the domain, providing

full stratification with 𝑁 strata (in the actual implementation, we

may swap the primal and antithetic samples). In order to evaluate

the impact of antithetic sampling, we also consider in Fig. 8-(6a) a

fully stratified extension of Fig. 8-(6), but which does not exploit

any antithetic properties. Instead, this approach enforces 𝑁 strata

in time and correlates the paths of random strata with each other

(stratum 𝑖 is correlated with a random stratum 𝑗 on the other half).

In Fig. 9, we compare the effect of using further stratification

in the Cornell-box scene. (We describe the experiment details

in Sec. 6.) When we do not use further stratification, the relative

performance of different techniques resembles the 1D casewith𝑁𝑡 =

2 in Fig. 7. Applying further stratification keeps relative performance

similar, but reduces overall variance for all time-domain sampling

techniques. Thus, to ensure optimal performance, we use in our

experiments further stratification in the time domain for all sampling

methods except uniform sampling.
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Fig. 8. Comparison of time-domain stratification techniques. We visualize
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path evolutions, as in Fig. 4. The 1D case in Fig. 7 considers only the time

domain and corresponds to (a) with 𝑁 = 𝑁𝑡 = 2. The rendering case jointly

considers both time and path domains. The direct expansion of the 1D to

the rendering case is (b), with 𝑁𝑡 = 2. In (c) we further improve (b) with

𝑁𝑡 = 2, by stratifying the time domain. 𝑆𝑖 is a stratum of [𝑖/𝑁𝑇, (𝑖+1)/𝑁𝑇 ].
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Fig. 9. RMSE versus𝜔r (normalized𝜔
d
) for various sampling configurations

and waveforms for the Cornell-Box scene. The relative performance when

not using further stratification (dotted line) is similar to the 1D case in Fig. 7.

Enforcing further stratification (solid line) improves it in all cases.
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4.6 Analytic Approximation

So far, we have discussed Monte Carlo integration techniques to

estimate Eq. (9). We can alternatively derive an analytic approxima-

tion to this equation, which results in a fast but biased estimate. The

first-order Taylor series approximations of 𝑓 (x(𝑡)) and ∥x(𝑡)∥ are:

𝑓 (x(0)) + 𝑡 𝜕
𝜕𝑡
𝑓 (x(𝑡)), ∥x(0)∥ + 𝑡 𝜕

𝜕𝑡
∥x(𝑡)∥ . (18)

We evaluate the derivatives with the finite-difference method, using

values at 𝑡 = 0,𝑇 . With this approximation, we can integrate Eq. (9)

analytically. This analytic approximation is similar to the method of

Heide et al. [2015], except that we use first-order approximations for

both ∥x(𝑡)∥ and 𝑓 (x(𝑡)), whereas Heide et al. use zeroth-order ap-
proximation for 𝑓 (x(𝑡)). We found that our analytic approximation,

while still biased, significantly improves rendering performance

compared to Heide et al.’s approximation (Fig. 19).

5 PATH CORRELATION BY TEMPORAL SHIFT MAPPING

We have discussed an efficient antithetic time domain sampling

assuming a path mapping M such that 𝑓 (x(𝑡)) and ∥x(𝑡)∥ remain

approximately constant over time 𝑡 . In this section, we will focus

on finding such a mappingM. As aM that results in near-constant

𝑓 (x(𝑡)) also results in near-constant ∥x(𝑡)∥, we will focus on only

𝑓 (x(𝑡)). We will consider mappings M that we can represent as

a composition of bijective path vertex mapping functions T𝑖 (𝑡, ·) :
R3 → R3 for each vertex x𝑖 (0) until path depth 𝐾 . Therefore:

M(𝑡, x(0)) ≔ T0 (𝑡, x0 (0))T1 (𝑡, x1 (0)) . . . T𝐾 (𝑡, x𝐾 (0)) . (19)

We assume that pixel coordinate of the camera ray T0 (𝑡, x0 (0)) →
T1 (𝑡, x1 (0)) is unaltered by M. Such a constraint makes sensor

importance remain the same, decreasing variance significantly. Prior

work has studied finding good mappings M in the context of shift
mappings between adjacent pixels [Hua et al. 2019; Kettunen et al.

2015; Lehtinen et al. 2013; Manzi et al. 2016]. Our M is a time-

domain shift, not an image-domain shift as most of the works, so we

call it temporal shift mapping following Manzi et al. [2016]. However,

ourM can be defined on arbitrary shift values, not a unit frame shift

as Manzi et al. [2016]. We will adopt some simple shift mapping

strategies, as we discuss in the following subsections. Previously, we

defined the reference path space at 𝑡 = 0, but we now equivalently

use the primal time sample as a reference for convenience.

5.1 Temporal Random Replay

In temporal random replay Ts, we use the same sequence of random

numbers to generate both primal and antithetic paths [Hua et al.

2019; Manzi et al. 2016]. Temporal random replay is a mapping

on primary sample space (PSS) [Kelemen et al. 2002]. Therefore, to

be accurate, T𝑖 should be defined on random numbers required to

sample x𝑖 . However, exploiting the theoretical bijectivity between

random numbers and paths [Bitterli et al. 2018], we will keep using

the path vertex representation with a bit of abuse. We found that

temporal random replay works well when path vertex locality is

preserved—the transformed points still intersect the same object,

with roughly the same normal, texture coordinates, etc.—but fails

otherwise—near silhouette edges or high-frequency textures.

𝐱a
= 𝒯p 𝐱

𝐱

(b) Random Replay (c) Path Reconnection(a) Primal Path

𝑦 = 1.0

0.0

ℎ

𝐱c = 𝐱e

𝐱1 𝐱1

𝐱a
= 𝒯s 𝐱

𝐱1

𝐱

𝐱1 is specular𝐱1 is diffuse

= (0, ℎ)

(d) መ𝑓 ത𝐱 − መ𝑓 ത𝐱a divided by 𝑝 ത𝐱 at each 𝐱 = (0, ℎ)

𝐱

Random Replay : 5.50e-3
Path Reconnection : 5.35e-5

Variance

1.00.0 ℎ 1.00.0

0.0

1.0

−0.05

0.20

ത𝐱: 𝐱c𝐱1𝐱𝐱e
ത𝐱a: 𝐱c𝐱1𝐱a𝐱e

𝐱c = 𝐱e 𝐱𝑐 = 𝐱e

መ 𝑓
ത 𝐱

−
መ 𝑓
ത 𝐱
a

𝑝
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(−1,1)

መ 𝑓
ത 𝐱

−
መ 𝑓
ത 𝐱
a

𝑝
ത 𝐱

Random Replay : 8.53e-6
Path Reconnection : 1.45e-4

Variance

𝐯 = (10,0)

Fig. 10. We exploit two temporal shift mapping techniques to generate

an antithetic path for a given (a) primal path. Random replay (b) uses the

same random numbers as the primal path to generate the antithetic path.

Path reconnection (c) keeps vertices attached to the moving geometry to

preserve locality. We show (d) the difference of
ˆ𝑓 between the primal and the

antithetic path, divided by the sampling pdf, for vertical wall points. Random

replay has better correlation everywhere except near the edge, which results

in significant variance for the diffuse case, but not the specular case.

5.2 Temporal Path Reconnection

In temporal path reconnection Tp, we reconnect antithetic path

with transformed primal path vertex along with the geometry it

resides on. Temporal path reconnection is conceptually equivalent

to path reconnection in Kettunen et al. [2015], but transforms the

target vertex according to time. Temporal path reconnection has

the advantage of preserving locality at the transformed point. How-

ever, it does not consider BSDF importance sampling, thus it is less

advantageous for making 𝑓 (x(𝑡)) constant over 𝑡 . This is especially
problematic for specular materials where a small change in ray

direction causes significant BSDF change.

For shorter notation, we will omit the word temporal from both

temporal random replay and temporal path reconnection from now.

5.3 Analysis of Random Replay and Path Reconnection

To better understand the two types of temporal shift mappings, we

consider the simple 2D scene in Fig. 10. We denote a primal path

x. and its antithetic path xa. The floor is fixed and the wall that

runs vertically between 𝑦 ∈ [0, 1] moves in the positive 𝑥 direction

with speed of 10. The point light source (xe) and sensor (xc) are
collocated. We use BSDF sampling to sample the primal path at 𝑡 = 0,

which has the form x = xcx1xxe with vertices xc = (−1, 1), x1 =

(−0.3, 0), x = (0, ℎ), and thus only depends onℎ ∈ [0, 1]. To map x to
its antithetic path xa at 𝑡a = 0.5𝑇 , where 𝑇 = 0.001, our only degree

of freedom is changing the intersection point xa on the moved wall

at 𝑡a, which we can do using either Ts or Tp. To compare the two

mappings, in Fig. 10 we plot the difference of
ˆ𝑓 (x) − ˆ𝑓 (xa) divided

by the primal path pdf 𝑝 (x), which is an unbiased estimate for
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(pixel correlation)
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(perfect path correlation, 

or temporal shift mapping)
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Fig. 11. Effects of varying path correlation strength. By increasing the

shift mapping depth or mapping more paths, and thus making paths more

correlated, we can decrease variance of the time sub-integral, but increase

variance of the path sub-integral. The optimal shift mapping depth depends

on the scene configuration and heterodyne frequency.

Eq. (9) with perfectly matching modulation term. We observe that

random replay gives near-zero difference for most of the ℎ values.

However, for primal points near the edge of the wall, random replay

gives an invalid antithetic point, and
ˆ𝑓 drastically changes. This

results in a large spike near the edge if x1 is diffuse. On the other

hand, path reconnection does not suffer from this discontinuity

problem. For specular materials, random replay still suffers from the

discontinuity, but is better than path reconnection. This is because

path reconnection causes a dramatic change in BSDF, which makes

𝑓 differ significantly between primal and antithetic paths.

Primal and Antithetic Multiple Importance Sampling. As any path

could be sampled as either primal or antithetic, we use multiple

importance sampling (MIS) [Veach and Guibas 1995] between primal

and antithetic samples. MIS is known to reduce variance in path

reconnection [Kettunen et al. 2015].

Ensuring Unbiasedness. MIS between primal and antithetic sam-

ples also helps ensure unbiasedness—it effectively rejects a shift

mapping if bijectivity fails because the antithetic path has zero

throughput (e.g., due to a missing ray or path blocking) and thus

could not have been sampled as the primal path. In this case, the

integration falls back from Eq. (4) to Eq. (3), but is still unbiased. One

thing we need to be careful about is to ensure the primal sample

covers whole time domain so that there exists no unsampled area

even though shift mapping fails. This is why we randomly swapped

the stratum of primal and antithetic samples in Sec. 4.5.

Implementation. Random replay is preferable to path reconnec-

tion in terms of implementation complexity. We can implement

random replay implicitly by simply repeating the path tracing pro-

cess with the same sampler and random seed, but replacing the

primal with the antithetic time sample. On the other hand, to im-

plement path reconnection, we need to either trace primal and

antithetic paths at the same time, or store the primal path and up-

date its vertices to form the antithetic path.
1
Both approaches have

considerable implementation overhead.

5.4 Adaptive Temporal Shift Mapping

As neither random replay nor path reconnection is universally better,

we follow Kettunen et al. [2015] and combine the two mapping

strategies adaptively based on the vertex material: If current, next

vertex of primal path (x𝑖 , x𝑖+1), and current vertex of antithetic path
(xa,𝑖 ) are identified as diffuse material, we use path reconnection,

otherwise, we use random replay. We found this adaptive approach

to be effective for most scenes. An alternative approach would be to

use MIS between the two shift mapping strategies. Unfortunately,

we found this approach to be prohibitively expensive, as it requires

storing 2
𝐾
paths created with all possible per-vertex combinations

of random replay versus path reconnection. Furthermore, we show

in the supplement that such an MIS approach is not guaranteed to

perform well under antithetic sampling.

5.5 Depth-limited Temporal Shift Mapping

In practice, instead of mapping the entire path until vertex 𝐾 , we

can limit mapping only to the first 𝐾𝑑 < 𝐾 vertices,

M(𝑡, x(0)) ≔ T0 (𝑡, x0 (0))T1 (𝑡, x1 (0)) . . . T𝐾𝑑
(𝑡, x𝐾𝑑

(0)) . (20)

After 𝐾𝑑
th

vertex, we continue the path using independent path

tracing.
2
Note that this is no longer deterministic shift mapping, but

correlation with some stochasticity. This depth-limited approach

makes the primal and antithetic paths less correlated, and thus

makes antithetic time sampling less effective. However, it is advan-

tageous in terms of increasing diversity in path space. Figure 11

shows this trade-off between path correlation and path diversity.

Empirically, we found that perfect path correlation, (or temporal

shift mapping), works best at near-heterodyne modes, whereas lim-

ited correlation works best at near-homodyne modes.

1
Random replay can be also implemented this way, but the implicit method is preferable.

2
Our choice to stop shift mapping at vertex 𝐾𝑑 means that our rendering algorithm

uses a hybrid between the path integrals of Eq. (3) and Eq. (4), with partial Jacobian.
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Fig. 12. RMSE and PSNR of different sampling methods for 𝜔r ∈ [0, 1] (𝑥-axis for all of the plots). We plotted mean and variance for uniformly spaced values

of𝜓 . Shifted antithetic sampling with shift mapping had the best performance for 𝜔r ∈ [0.5, 1.0]. For 𝜔r ∈ [0.0, 0.5], among techniques with shift mapping,

mirrored antithetic sampling performed the best; but shift mapping did not always improve performance.

6 EXPERIMENTS

In this section, we evaluate the time-path sampling techniques we

proposed in Secs. 4 and 5 for various scene geometries, modulation

functions, and modulation frequencies.

Implementation and Experimental Settings. We implement CPU

and GPU versions of our algorithm using Mitsuba 0.6 [Jakob 2013]

and Mitsuba 3 [Jakob et al. 2022]. We use six scenes for evaluation,

with a collocated point light source and camera. Across all scenes,

we set 𝜔𝑔 = 30MHz and𝑇 = 1.5ms, same as Heide et al. [2015]. We

use 1024 samples per pixel (spp) for all experiments. We also set the

maximum bounce depth to 4, or 8 if the scene contains refractive

objects. Unless we state otherwise, we use𝑁𝑡 = 2 and random replay

with full depth by default. To simplify notation, we use a normalized

version 𝜔r ∈ [0, 1] instead of 𝜔
d
∈ [0, 2𝜋/𝑇 ] in this section.

6.1 Effectiveness of Antithetic Sampling

To demonstrate the effectiveness of our proposed antithetic sam-

pling methods with path correlation, we compare them against

standard sampling techniques with and without shift mapping for

various scenes under different heterodyne frequencies𝜔r and sensor

phase offsets 𝜓 (11 × 11 configurations of 𝜔r ∈ [0, 1], 𝜓 ∈ [0, 2𝜋]
with uniformly-spaced intervals). In each method except uniform

sampling, we use further stratification as we described in Sec. 4.5.

Figure 12 shows averages and standard deviations of RMSE and

PSNR computed across 𝜓 values. For 𝜔r ∈ [0.5, 1.0], shifted anti-

thetic sampling with shift mapping clearly shows the best perfor-

mance, especially at perfect heterodyne mode (𝜔r = 1), where it is

around two orders of magnitude better in terms of squared error

(variance) compared to the worst case of uniform sampling.

On the other hand, for 𝜔r ∈ [0.0, 0.5], there is no clear winner. If

we consider only sampling methods with shift mapping (solid line),
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Fig. 13. Qualitative results in Cornell-Box for different values of 𝜔r at

𝜓 = 0. Above each image we denote relative RMSE. We use shift mapping

for all methods except uniform sampling. Performance differences are very

noticeable at𝜔r = 1.0, but become essentially indistinguishable for𝜔r < 0.8.

their relative performance is similar to the 1D case in Fig. 7, where

mirrored antithetic sampling works best for 𝜔r ∈ [0.0, 0.5], shifted
antithetic sampling works best for 𝜔r ∈ [0.5, 1.0], and stratified

sampling falls somewhere in between. However, such perfect path

correlation turned out to be not always helpful for 𝜔r ∈ [0.0, 0.5].
This difference in performance is due to the trade-offwe explained

in Fig. 11 between variance in path space and time space. For the

homodyne case (𝜔r = 0), themodulation term is near constant, so the

variance in path space is the main bottleneck and we should dedicate

more samples for path diversity, whichmakes shift mapping harmful.
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Fig. 14. Qualitative results using different time sampling methods for perfect heterodyne mode (𝜔r = 1.0) with𝜓 = 0. We used shift mapping in all results, as

it performs the best at 𝜔r = 1.0 (Fig. 12). We omit mirrored antithetic sampling for easier visualization. For each scene, we show D-ToF renderings, standard

intensity renderings, and the ground truth radial velocity maps computed from depth differences at 𝑡 = 0,𝑇 . Our proposed shifted antithetic sampling

method has significantly lower variance than the uniform or stratified sampling methods.

As 𝜔r increases, the variance in time space due to the modulation

term increases and eventually outweighs the variance in path space.

Then, we should favor better time sampling with shift mapping

at the cost of reduced path diversity. The exact value of 𝜔r where

this change occurs is scene-dependent. For example, for a simple

scene like the Cornell-box, path-space variance is relatively low,

so improving time sampling using mirrored antithetic with shift

mapping starts to become helpful from𝜔r ≈ 0.2. This value is 0.3 for

the Living-room, while does not appear for other scenes. We have

more discussion on this correlation-diversity trade-off in Sec. 6.2.

Fortunately, when we consider PSNR, performance differences

between methods are relatively small for 𝜔r ∈ [0.0, 0.5] (Fig. 13).
However, for 𝜔r ∈ [0.5, 1.0], the differences become more pro-

nounced, especially at 𝜔r = 1.0. This implies that as 𝜔r becomes

larger, it becomesmore important to use carefully designed sampling

techniques, in which case the proposed method can be particularly

helpful. The qualitative evaluation for perfect heterodyne mode in

Fig. 14 shows clear visual differences between sampling methods.

Using Other Waveforms. In Fig. 9, we show that our method per-

forms well with other widely used non-sinusoidal modulation wave-

forms (rectangular, triangular and trapezoidal). Overall, relative

performances remain consistent with the sinusoidal case.

Verification of Optimal Antithetic Shift. To verify our claim for the

optimal shift 𝑡s for antithetic sampling (Secs. 4.2 and 4.3), in Fig. 15

we show experiments using varying shift 𝑡s in [0,𝑇 ]. The first two

M
ir

ro
re

d 
A

nt
it

he
ti

c
Sh

if
te

d 
A

nt
it

he
ti

c

RMSE(𝜔r, 𝜓 = 0.8𝜋, 𝑡s)RMSE(𝜔r, 𝜓 = 0.0𝜋, 𝑡s) 𝔼𝜓 RMSE(𝜔r, 𝜓, 𝑡s)

𝜔r0 1

𝑡s

𝑇

𝜔r0 1

𝑡s

𝑇

𝜔r0 1

𝑡s

𝑇

𝜔r0 1

𝑡s

𝑇

𝜔r0 1

𝑡s

𝑇

𝜔r0 1

𝑡s

𝑇

high

low

Fig. 15. RMSE by using different antithetic shifts (𝑡s) for Cornell-Box. For

shifted antithetic, the optimal value occurs at 0.5𝑇 independent of𝜔r,𝜓 . For

mirrored antithetic, the optimal value depends on𝜓 . However, the optimal

expected RMSE over uniform𝜓 occurs at 𝑡s = 0, independent of 𝜔r.

columns show results for specific values of𝜓 , and the last column

shows averages across all values of𝜓 . Shifted antithetic sampling

performs the best results when 𝑡s = 0.5𝑇 for all combinations of

𝜔r and𝜓 . For mirrored antithetic sampling, the optimal shift value

varies depending on𝜓 . However, when we consider the averaged

results across all values of𝜓 , optimal performance occurs at 𝑡s = 0

and 𝑡s = 𝑇 . These observations are consistent with our theory.
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the optimum and consistently outperforms stratified sampling (red).

6.2 Effect of Path Correlation Strength

We investigate the effect of varying degrees of correlation between

sampled paths, as illustrated in Fig. 11. First, we examine the impact

of increasing correlation by usingmore than two shift-mapped paths

(𝑁𝑡 > 2) (Fig. 11-(d)). For stratified sampling, we increase 𝑁𝑡 from 2

to 1024 while keeping the number of time strata fixed at 1024. For

antithetic sampling, we only consider the shifted method, as extend-

ing the mirrored method to 𝑁𝑡 > 2 is not straightforward. There

are different ways to implement antithetic sampling with multiple

samples. We use a periodic approach analogous to uniform jittered

sampling [Pauly et al. 2000; Ramamoorthi et al. 2012]: instead of a sin-

gle antithetic shift with 0.5𝑇 , we use [𝑇/𝑁𝑡 , 2𝑇/𝑁𝑡 , . . . , (𝑁𝑡−1)𝑇/𝑁𝑡 ]
where 𝑁𝑡 ∈ [2, 1024], and correlate these paths with shift mapping.

From Fig. 16, we observe that increasing 𝑁𝑡 above 2 generally

degrades performance, but can provide some improvement at high

𝜔r values for stratified sampling. This improvement is because the

variance of the modulation term dominates performance, thus dedi-

cating more samples to the time domain is helpful. Too many corre-

lated paths, however, result in higher variance due to limited path

diversity. Modulation variance increases with larger 𝜔r, so strati-

fied sampling achieves its minimum RMSE for 𝑁𝑡 > 2 as 𝜔r → 1.

Periodic sampling shows a similar trend, but it reaches its lowest

RMSE at a much lower 𝑁𝑡 (usually 𝑁𝑡 = 2 or 𝑁𝑡 = 4). Further-

more, performance at that point is better than stratified sampling.

The performance improvement is largest for perfect heterodyne

mode, where periodic sampling with just two samples already gives

near zero-variance estimation, thus making it better to allocate the

remaining samples towards increasing path diversity. Within the

above general trends, there are some notable scene-dependent differ-

ences. As scene complexity increases (Cornell-Box < Living-Room

< Bedroom), the penalty from reduced path diversity increases, and

using more correlated paths becomes more harmful. In summary,
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Fig. 17. The effect of using different maximum shift mapping depths. Large

correlation depths work best for higher 𝜔r, and worst for lower 𝜔r.

antithetic sampling with just 𝑁𝑡 = 2 correlated paths was best for

many cases and especially for perfect heterodyne mode.

Second, we examine the impact of varying the maximum shift

mapping depth 𝐾𝑑 (Fig. 11-(a-c)). Maximum shift mapping depth

𝐾𝑑 = 0 implies using no correlation at all, 1 implies camera ray

(pixel) correlation, and so on until full path correlation (shift map-

ping). Figure 17 shows qualitative results. For 𝜔r ∈ [0.5, 1.0], using
larger 𝐾𝑑 gives better results, but the opposite is generally true

for 𝜔r ∈ [0.0, 0.5]. This change occurs because the variance of the
modulation term becomes less dominant as 𝜔r → 0. Interestingly,

completely abandoning variance from the modulation term (𝐾𝑑 = 0)

gives the worst performance except over a small region near 𝜔r = 0.

This indicates that there should be the optimal balance between

path correlation and diversity for 𝜔r ∈ [0.0, 0.5], but this seems to

be highly scene-dependent, making it hard to find an absolute rule.

6.3 Shift Mapping Strategy Comparison

In Fig. 19, we compare the different shift mapping strategies we

introduced in Sec. 5. In general, if specular materials are dominant

in the scene, random replay works better; conversely, path reconnec-

tion works better for scenes with mostly diffuse materials. However,

exceptions can arise: In Fig. 18, even though the scene is diffuse,

there is a region where path reconnection fails. In this region, the
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R
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M
SE

Path Reconnection Random Replay Analytic (Path Reconnection)

Fig. 18. Comparison of different shift mapping methods. The scene is made

up of diffuse materials, so path reconnection works better than random

replay. However, it fails near the region highlighted in red. There, the lengths

of interreflected rays are short, and thus path reconnection causes a large

change in 𝑓 (x(𝑡 ) ) , which increases variance.
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Fig. 19. Qualitative result and relative MAE using different shift mapping strategies. We use MAE instead of RMSE because RMSE overestimated the failure

case depicted in Fig. 18. Among unbiased techniques, adaptive correlation works best in most cases. The integration-based method (first-order approximation)

shows bias similar to Heide et al. [2015], but has significantly lower error than their zero-order approximation of integrand.

length of interreflected rays is small, and thus geometric attenuation

varies significantly for path reconnection. Adaptive strategy gener-

ally works better than either path reconnection or random replay.

For all three methods, MAE (Fig. 19, right column plots) decreases

at the rate of 1/√spp, showing that they are unbiased.

6.4 Analytic Approximation

In Fig. 19, we include results to show the speed-up and bias of our

analytic approximation. This approximation results in a less noisy

image compared to Monte Carlo methods but shows noticeable

bias in both the images and the MAE plot over spp. Our first-order

approximation still gives better results compared to the zeroth-order

approximation from Heide et al. [2015], which demonstrates the

importance of considering non-constant 𝑓 (x(𝑡)) over exposure time.

6.5 High Frequency Terms and Precision Issue

As D-ToF rendering handles very small numerical values, such as 𝑣/𝑐,
it is vulnerable to numerical precision issues. We run our algorithm

in both 32 bit (Mitsuba 3, CUDA) and 64 bit (Mitsuba 0.6, CPU)

floating-point precision, and compare rendered results in Fig. 20. We

also compare rendered results without ignoring the high-frequency

terms in Eq. (7), which are most sensitive to such precision issues.

In the full signal rendering without low-pass filtering, we notice

strong ringing artifacts when using 32 bit precision, which persists

as we increase the number of samples. We found that scaling up the

scene helps resolve these artifacts—generally, a 10 − 100× scaling

Lo
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ed
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Float 32 (Mitsuba 3, CUDA) Float 64 (Mitsuba 0.6, CPU)

28 28218 218spp

Fig. 20. We compare renderings at float32 and float64 precision, for the

low-pass filtered and full D-ToF integral. The full rendering at float32 has

ringing artifacts, which we can resolve by increasing precision or removing

high frequencies, at the cost of longer runtimes and bias, respectively.

was effective, but we could not increase the scale arbitrarily due to

intersection precision problems. For 64 bit precision, such artifacts

do not occur, but noise is increased universally. Low-pass filtering

the modulation term as Eq. (8) resolves ringing artifact and noise

with the cost of negligible bias (< 1%) for both precisions.

6.6 Area Light Sources

To demonstrate that our algorithm can handle a variety of light

sources and materials, in Fig. 21 we render the Cornell-box and
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CORNELL-BOX LIVING-ROOM

Fig. 21. An example scene using area light source demonstrating that the

renderer can handle a variety of light sources along with material properties.

Living-room scenes with area light sources. The figure illustrates

the complex interplay of diverse light paths. Overall, it took more

time (16–64×) to converge compared to a point light.

7 APPLICATION TO RADIAL VELOCITY ESTIMATION

In this section, we reproduce the radial velocity estimation algo-

rithms from previous D-ToF imaging systems. We identify condi-

tions under which these algorithms fail and explain the failure cases.

With the help of our D-ToF rendering engine, we identify new imag-

ing system parameters that, if realized experimentally, can make

the velocity estimation more accurate.

7.1 Reproducing Existing D-ToF Imaging System

We first use simulation to reproduce the systems and algorithms

of Heide et al. [2015] and Hu et al. [2022] in virtual experiments,

using the same experimental setup as Hu et al. (𝜔𝑔 = 74MHz,

𝑇 = 2ms) with collocated sensor and point light source. For Heide

et al., we use the ratio of homodyne (𝜔r = 0.0) to heterodyne

(𝜔r = 1.0) measurements to estimate radial velocity; for Hu et al.

we use the ratio of 𝜔r = 0.6625 (optimal for sinusoidal) measure-

ments with four different 𝜓 offsets. We tested five different Δ𝜔s,
−10Hz, −5Hz, 0Hz, 5Hz and 10Hz over 𝜓 ∈ [0, 𝜋]. Figure 22

shows the simulated result, which is similar to Fig. 8 from Hu et al.

[2022]. The measurement ratio of Hu et al.’s (𝑟2) shows a larger

margin compared to Heide et al.’s ratio (𝑟OF), which implies that Hu

et al.’s technique can better separate different Doppler frequencies.

For more details, we refer to Hu et al. [2022]. We note that we did

not model the sensor noise profile. The noise in Fig. 22 is Monte

Carlo noise, not simulated sensor shot noise.

Heide et al.’s [2015] setupHu et al.’s [2022] setup
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R
at

io
 (𝑟

2
)

0.5

−0.5

−0.5

−1.5
0 𝜋 Phase offset 𝜓0 𝜋

-10 Hz
-5 Hz
0 Hz
5 Hz
10 Hz

R
at

io
 (𝑟

O
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Fig. 22. We reproduce the hardware results from Hu et al. [2022] with

our renderer. This figure illustrates that Hu et al.’s technique can separate

Doppler frequencies better than Heide et al.’s [2015] technique.
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Fig. 23. We observe that for the same scene configuration shown in (a), the

reconstructed radial velocity in (b) varies significantly for different phase

offset𝜓 values. Only the left top corner (𝜓 = 0) gives the correct velocity.

We only show result of Heide et al. [2015], but similar for Hu et al. [2022].

For both methods, however, we found that velocity estimation

works well only for certain offsets (Fig. 23). For others, the recon-

structed velocity direction can even be reversed. One interpretation

is that such deviations are simply variance, but next we provide a

better interpretation in terms of the dynamic ToF path integral.

7.2 Limitations of Velocity Estimation Algorithms

Existing velocity estimation algorithms for D-ToF imaging sys-

tems [Heide et al. 2015; Hu et al. 2022] assume that the object normal

is parallel to the viewing direction, the light sources are directional,

and global illumination is absent. When these assumptions fail, the

velocity estimation algorithms become inaccurate. In this section,

we use our rendering algorithm to investigate each factor in turn.

Effective Radial Velocity. First, we clarify the exact definition of

the velocity that Doppler imaging estimates. We consider Fig. 24-(a),

where the camera xc and point light source xe are collocated, and
locality is preserved over single-bounce paths xcx(𝑡)xe. Then:

x(𝑡) = x(0) + d𝑢𝑡 and (x(0) + v𝑡 − x(𝑡)) · n = 0, (21)

where d is the ray direction, n is the surface normal, v is the object

velocity, and𝑢 is the effective radial speed in direction dwhich equals

𝑢 =
(n · v)
(n · d) . (22)

𝐱c = 𝐱e

𝐧

𝐧

𝐯𝑡

𝐱(0)

𝐱 𝑡 = 𝐱 0 + 𝐝𝑢𝑡

𝐱(0) + 𝐯𝑡𝐝

𝑙

(b) Radial Velocity

-20 200

(a)

Fig. 24. Effective radial velocity for a planar patch. The Doppler imaging

algorithms assume that the surface normal of the object aligns with the

viewing direction. However, for a general planar patch shown in (a), the

effective radial speed𝑢 = (n · v)/(n · d) . This results in large radial velocity
estimates for objects viewed at grazing angle as shown in (b).
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Fig. 25. Effect of geometric attenuation term. We multiplied𝑚 (𝑇 ) by 𝑙2
to aid visualization. We show the integrated radiance for homodyne and

heterodyne mode for 0, 1, 2-order Taylor series approximations of the geo-

metric attenuation term. Previous velocity computation techniques derived

velocity expressions assuming 0-order approximation for the forward model.

These algorithms fail when the approximation is not valid.

This is different from the actual radial speed, (v · d). We refer to the

velocity vectors associated with these speeds as the effective radial

velocity and radial velocity, respectively. Therefore, the effective

radial speed is equal to the radial speed only if the object normal

aligns with the viewing direction. At grazing angles (Fig. 24 (b)),

the effective radial speed previous techniques report could be larger

than the object’s radial speed (side of the box in Cornell-box).

Time-varying Geometric Attenuation. We proceed to analyze 𝑓 in

Eq. (9) for single-bounce paths in Fig. 24-(a).The distance toward the

object at 𝑡 = 0 is 𝑙 and the object is moving away from the camera

with effective radial speed 𝑢. Then we can write 𝑓 in Eq. (9) as

𝑓 (x(𝑡)) = 𝑓𝑟 (x(𝑡),−d,−d) (n · −d)
(𝑙 + 𝑢𝑡)2

(23)

where 𝑓𝑟 is the BRDF. We assume 𝑓𝑟 and n are constant over 𝑡 , so

that only the geometric attenuation term (𝑙 + 𝑢𝑡)−2 affects 𝑓 . Both
Heide et al. [2015] and Hu et al. [2022] assume a constant geometric

attenuation term and integrate cosine modulation terms over time,

which is accurate if either the distance 𝑙 is large, the light source is

directional, or the cosine frequency is small (homodyne). In terms

of Taylor series expansion, this is a zeroth-order approximation of

(𝑙 + 𝑢𝑡)−2. On the other hand, our approximate analytic expression

uses first-order approximation. To validate our approximation, we

calculated𝑚(𝑇 ) with different approximation orders.

Figure 25-(a,b) show analytically integrated𝑚(𝑇 ) for homodyne

and heterodyne modes. The red line is the ground truth value, while

lines with labels 0, 1, 2 represent different order Taylor-series ap-

proximations. For homodyne mode, even the zeroth-order Taylor

approximation is accurate and hence, CW-ToF cameras that use

homodyne for depth measurement do not suffer from this problem.

However, there is a lot of deviation in the heterodyne mode, es-

pecially when we use zeroth-order approximation. The first-order

approximation also fails at close distances, but overall, it is signif-

icantly more accurate than the zeroth-order, which explains why

our analytic integration outperforms Heide et al. [2015].

Figure 25-(c) shows the result for radial velocity calculation.

The physically accurate 𝑚(𝑇 ) gives significantly deviated veloc-

ity with many discontinuities, implying that velocity computation

techniques fail when geometric attenuation (or in general, path

throughput 𝑓 ) varies over exposure time. This is why the existing

ratio-based techniques fail for some𝜓s in Fig. 23.

Global Illumination. Another scenario where the velocity estima-

tion fails is in the presence of strong global illumination. In Fig. 26,

we show how global illumination results in inaccurate velocity esti-

mates. Quantifying the impact of global illumination (usually termed

multi-path interference (MPI) in ToF literature) is crucial for ToF

applications, as evinced by the extensive prior work on suppressing

MPI in CW-ToF imaging [Kadambi et al. 2013; Whyte et al. 2015].

7.3 Improving Radial Velocity Calculation

To mitigate the challenges imposed by time-varying geometric at-

tenuation and global illumination, we propose a few solutions that

require operating the D-ToF camera at high frequency, which is

feasible with recent advances in CW-ToF cameras [Baek et al. 2023].

Mitigating Effects due to Time-varying Geometric Attenuation. One
way to mitigate the effects of time-varying geometric attenuation

on velocity estimation is to increase the working distance or use a

directional light, both of which make geometric attenuation (approx-

imately) constant. Another approach is to increase the modulation

frequency 𝜔𝑔 . From Fig. 25 (d), we observe that increasing this

frequency makes the velocity estimation error small over a larger

working distance range. However, increasing modulation frequency

makes homodyne mode become zero more frequently, which causes

𝜔𝑔=30 MHz (default)
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Fig. 26. In the presence of global illumination (multi-bounce), velocity esti-

mation algorithms fail. We observed, however, that using higher modulation

frequency illumination diminishes the global illumination effects.
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Fig. 27. For various object motions (translation, rotation, scaling), we ob-

served that global illumination significantly affects velocity computation at

low illumination frequency but not at high illumination frequency.

numerical precision problems resulting in noticeable ringing arti-

facts. We can resolve these problems by using two different phases

which have zero homodyne values at different positions (Fig. 28)

and combining them as in the six-sample method in Hu et al. [2022].

Mitigating Global Illumination. We found that using higher fre-

quencies also mitigates global illumination effects. In Fig. 26, we

show that increasing the modulation frequency reduces the inac-

curacy of velocity calculation due to global illumination. Figure 27

shows another example under various scene motions. This behavior

is because contributions from multi-bounce paths tend to cancel

out as modulation frequency increases. The same effect is already

known in structured light [Nayar et al. 2006] and CW-ToF [Gupta

et al. 2015] imaging systems and it is exciting to see that it also holds

true for D-ToF imaging systems.

Finally, we run our rendering algorithm and velocity estimation

techniques on more complex scene geometries under several frames

and animate the results (Fig. 1, Fig. 28). Our algorithm reliably and

efficiently reproduces both D-ToF images and radial velocity. We

provide more videos in the supplement.

8 CONCLUSION

We developed a D-ToF Monte Carlo rendering framework and tai-

lored sampling techniques for efficiently simulating D-ToF cameras.

Using our open source implementation, we showed that our tech-

niques provide orders of magnitude improved performance com-

pared to naive sampling techniques, under various illumination

and sensor modulation functions. We additionally reproduced in

simulation previously-reported results from real D-ToF hardware

systems [Heide et al. 2015; Hu et al. 2022], and investigated the

accuracy of their velocity estimation on a variety of scenes.

Our work suggests several directions for future research. Recent

advances in path reuse and shift mapping techniques, for both static

and animated scenes [Bitterli et al. 2020; Sawhney et al. 2022], could

Standard Rendering Recon Radial Velocity (𝜓 = 0) Merged Radial Velocity

Homodyne Mode (𝜓 = 0) Recon Radial Velocity (𝜓 = 0.5𝜋) Ground Truth Radial Velocity

Fig. 28. Homodyne mode has zero values at certain positions which causes

ringing artifact in velocity reconstruction. This could be improved by using

two different phases and mixing them. The rendering time for this scene

with 22 k triangles and 𝑁 = 1024 is 4 sec per frame.

be adapted into temporal mapping techniques for D-ToF render-

ing, to improve rendering performance for challenging scenes or

more general modulation waveforms. Additionally, our D-ToF path

integral framework invites the application to D-ToF rendering of

other Monte Carlo algorithms, such as Markov chain Monte Carlo

algorithms that have proven effective also for the related motion

blur rendering problem [Li et al. 2010; Luan et al. 2020].

Differentiable D-ToF rendering is another intriguing future re-

search direction, which could facilitate the design of D-ToF imag-

ing systems and related inverse rendering applications. The D-ToF

integral in Eq. (3) is differentiable when the illumination and ex-

posure codes are differentiable. However, as the integrand can be-

come negative, building efficient path sampling techniques is non-

trivial [Chang et al. 2023; Zhang et al. 2021]. Additional challenges

arise for discontinuous illumination and exposure waveforms (e.g.,

square): differentiating Eq. (3) then results in singularities in the

time-domain, which require sampling on delta manifolds similar to

those studied by Pediredla et al. [2019b] and Wu et al. [2021].

As light-based velocity sensing becomes commonplace in critical

applications (autonomous vehicles, robotic navigation, remote sens-

ing), we expect that our work will inspire rendering research for

other common or emerging technologies for this sensing modality.

An example is rendering frequency-modulated continuous-wave

(FMCW) ToF sensors [Qian et al. 2022]: even though their operation

is also based on the Doppler effect and correlation measurements,

these sensors are interferometric [Fercher et al. 2003; Kotwal et al.

2020], thus simulating them requires rendering challenging wave

effects [Bar et al. 2019; Steinberg and Yan 2021].

Last but not least, our open-source simulator can facilitate re-

search and engineering efforts toward designing and optimizing all

aspects of future D-ToF computational imaging systems. Examples

include the design of new sensor architectures, D-ToF modulation

functions, and velocity estimation algorithms that are robust to

noise and global illumination. In this context, our simulator can act

as a digital twin that enables quick prototyping, supervised data gen-

eration, quantitative evaluation, and even end-to-end optimization

of both hardware and software components of a real D-ToF com-

putational imaging pipeline. Towards realizing these applications,

it will be important to research and incorporate into our renderer

realistic sensor noise models for D-ToF imaging.
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